Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 91(3): 534-546, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28419587

RESUMEN

Pectic homogalacturonan (HG) is one of the main constituents of plant cell walls. When processed to low degrees of esterification, HG can form complexes with divalent calcium ions. These macromolecular structures (also called egg boxes) play an important role in determining the biomechanics of cell walls and in mediating cell-to-cell adhesion. Current immunological methods enable only steady-state detection of egg box formation in situ. Here we present a tool for efficient real-time visualisation of available sites for HG crosslinking within cell wall microdomains. Our approach is based on calcium-mediated binding of fluorescently tagged long oligogalacturonides (OGs) with endogenous de-esterified HG. We established that more than seven galacturonic acid residues in the HG chain are required to form a stable complex with endogenous HG through calcium complexation in situ, confirming a recently suggested thermodynamic model. Using defined carbohydrate microarrays, we show that the long OG probe binds exclusively to HG that has a very low degree of esterification and in the presence of divalent ions. We used this probe to study real-time dynamics of HG during elongation of Arabidopsis pollen tubes and root hairs. Our results suggest a different spatial organisation of incorporation and processing of HG in the cell walls of these two tip-growing structures.


Asunto(s)
Calcio/metabolismo , Pared Celular/metabolismo , Pectinas/metabolismo , Arabidopsis/metabolismo , Tubo Polínico/metabolismo
2.
Development ; 141(24): 4841-50, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25395456

RESUMEN

Polysaccharides are major components of extracellular matrices and are often extensively modified post-synthetically to suit local requirements and developmental programmes. However, our current understanding of the spatiotemporal dynamics and functional significance of these modifications is limited by a lack of suitable molecular tools. Here, we report the development of a novel non-immunological approach for producing highly selective reciprocal oligosaccharide-based probes for chitosan (the product of chitin deacetylation) and for demethylesterified homogalacturonan. Specific reciprocal binding is mediated by the unique stereochemical arrangement of oppositely charged amino and carboxy groups. Conjugation of oligosaccharides to fluorophores or gold nanoparticles enables direct and rapid imaging of homogalacturonan and chitosan with unprecedented precision in diverse plant, fungal and animal systems. We demonstrated their potential for providing new biological insights by using them to study homogalacturonan processing during Arabidopsis thaliana root cap development and by analyzing sites of chitosan deposition in fungal cell walls and arthropod exoskeletons.


Asunto(s)
Quitina/metabolismo , Matriz Extracelular/metabolismo , Sondas Moleculares , Oligosacáridos , Pectinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Pared Celular/ultraestructura , Quitina/aislamiento & purificación , Desmidiales/ultraestructura , Nanopartículas del Metal , Análisis por Micromatrices , Microscopía Electrónica de Transmisión , Sondas Moleculares/metabolismo , Estructura Molecular , Oligosacáridos/química , Oligosacáridos/metabolismo , Imagen Óptica/métodos , Pectinas/aislamiento & purificación , Cápsula de Raíz de Planta/crecimiento & desarrollo , Cápsula de Raíz de Planta/metabolismo
3.
Ann Bot ; 114(6): 1359-73, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25024256

RESUMEN

BACKGROUND AND AIMS: Parasitic plants obtain nutrients from their hosts through organs called haustoria. The hyaline body is a specialized parenchymatous tissue occupying the central parts of haustoria in many Orobanchaceae species. The structure and functions of hyaline bodies are poorly understood despite their apparent necessity for the proper functioning of haustoria. Reported here is a cell wall-focused immunohistochemical study of the hyaline bodies of three species from the ecologically important clade of rhinanthoid Orobanchaceae. METHODS: Haustoria collected from laboratory-grown and field-collected plants of Rhinanthus minor, Odontites vernus and Melampyrum pratense attached to various hosts were immunolabelled for cell wall matrix glycans and glycoproteins using specific monoclonal antibodies (mAbs). KEY RESULTS: Hyaline body cell wall architecture differed from that of the surrounding parenchyma in all species investigated. Enrichment in arabinogalactan protein (AGP) epitopes labelled with mAbs LM2, JIM8, JIM13, JIM14 and CCRC-M7 was prominent and coincided with reduced labelling of de-esterified homogalacturonan with mAbs JIM5, LM18 and LM19. Furthermore, paramural bodies, intercellular deposits and globular ergastic bodies composed of pectins, xyloglucans, extensins and AGPs were common. In Rhinanthus they were particularly abundant in pairings with legume hosts. Hyaline body cells were not in direct contact with haustorial xylem, which was surrounded by a single layer of paratracheal parenchyma with thickened cell walls abutting the xylem. CONCLUSIONS: The distinctive anatomy and cell wall architecture indicate hyaline body specialization. Altered proportions of AGPs and pectins may affect the mechanical properties of hyaline body cell walls. This and the association with a transfer-like type of paratracheal parenchyma suggest a role in nutrient translocation. Organelle-rich protoplasts and the presence of exceptionally profuse intra- and intercellular wall materials when attached to a nitrogen-fixing host suggest subsequent processing and transient storage of nutrients. AGPs might therefore be implicated in nutrient transfer and metabolism in haustoria.


Asunto(s)
Pared Celular/química , Mucoproteínas/metabolismo , Orobanchaceae/citología , Pectinas/metabolismo , Anticuerpos Monoclonales , Pared Celular/metabolismo , Epítopos , Esterificación , Glucanos/inmunología , Glucanos/metabolismo , Glicoproteínas/metabolismo , Inmunohistoquímica , Mucoproteínas/inmunología , Orobanchaceae/química , Orobanchaceae/metabolismo , Pectinas/inmunología , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Polisacáridos/inmunología , Polisacáridos/metabolismo , Xilanos/inmunología , Xilanos/metabolismo , Xilema/química , Xilema/citología , Xilema/metabolismo
4.
Plant Physiol ; 165(1): 105-18, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24652345

RESUMEN

The pectin polymer homogalacturonan (HG) is a major component of land plant cell walls and is especially abundant in the middle lamella. Current models suggest that HG is deposited into the wall as a highly methylesterified polymer, demethylesterified by pectin methylesterase enzymes and cross-linked by calcium ions to form a gel. However, this idea is based largely on indirect evidence and in vitro studies. We took advantage of the wall architecture of the unicellular alga Penium margaritaceum, which forms an elaborate calcium cross-linked HG-rich lattice on its cell surface, to test this model and other aspects of pectin dynamics. Studies of live cells and microscopic imaging of wall domains confirmed that the degree of methylesterification and sufficient levels of calcium are critical for lattice formation in vivo. Pectinase treatments of live cells and immunological studies suggested the presence of another class of pectin polymer, rhamnogalacturonan I, and indicated its colocalization and structural association with HG. Carbohydrate microarray analysis of the walls of P. margaritaceum, Physcomitrella patens, and Arabidopsis (Arabidopsis thaliana) further suggested the conservation of pectin organization and interpolymer associations in the walls of green plants. The individual constituent HG polymers also have a similar size and branched structure to those of embryophytes. The HG-rich lattice of P. margaritaceum, a member of the charophyte green algae, the immediate ancestors of land plants, was shown to be important for cell adhesion. Therefore, the calcium-HG gel at the cell surface may represent an early evolutionary innovation that paved the way for an adhesive middle lamella in multicellular land plants.


Asunto(s)
Pared Celular/metabolismo , Carofíceas/citología , Carofíceas/metabolismo , Pectinas/metabolismo , Calcio/metabolismo , Adhesión Celular/efectos de los fármacos , Pared Celular/ultraestructura , Celulosa/metabolismo , Carofíceas/efectos de los fármacos , Carofíceas/ultraestructura , Ácido Edético/análogos & derivados , Ácido Edético/farmacología , Epítopos/metabolismo , Análisis por Micromatrices , Modelos Biológicos , Pectinas/química , Pectinas/inmunología , Poligalacturonasa/metabolismo , Polisacárido Liasas/metabolismo
5.
J Exp Bot ; 65(2): 465-79, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24285826

RESUMEN

Application of the dintroaniline compound, oryzalin, which inhibits microtubule formation, to the unicellular green alga Penium margaritaceum caused major perturbations to its cell morphology, such as swelling at the wall expansion zone in the central isthmus region. Cell wall structure was also notably altered, including a thinning of the inner cellulosic wall layer and a major disruption of the homogalacturonan (HG)-rich outer wall layer lattice. Polysaccharide microarray analysis indicated that the oryzalin treatment resulted in an increase in HG abundance in treated cells but a decrease in other cell wall components, specifically the pectin rhamnogalacturonan I (RG-I) and arabinogalactan proteins (AGPs). The ring of microtubules that characterizes the cortical area of the cell isthmus zone was significantly disrupted by oryzalin, as was the extensive peripheral network of actin microfilaments. It is proposed that the disruption of the microtubule network altered cellulose production, the main load-bearing component of the cell wall, which in turn affected the incorporation of HG in the two outer wall layers, suggesting coordinated mechanisms of wall polymer deposition.


Asunto(s)
Pared Celular/metabolismo , Celulosa/metabolismo , Chlorophyta/citología , Chlorophyta/metabolismo , Microtúbulos/metabolismo , Pectinas/metabolismo , Anticuerpos Monoclonales/metabolismo , Forma de la Célula/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Chlorophyta/crecimiento & desarrollo , Chlorophyta/ultraestructura , Dinitrobencenos/farmacología , Glicósido Hidrolasas/farmacología , Inmunohistoquímica , Análisis por Micromatrices , Microtúbulos/efectos de los fármacos , Modelos Biológicos , Polisacáridos/metabolismo , Sulfanilamidas/farmacología
6.
Plant J ; 68(2): 201-11, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21707800

RESUMEN

Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events.


Asunto(s)
Evolución Biológica , Pared Celular/química , Carofíceas/química , Lignina/análisis , Polisacáridos/análisis , Anticuerpos Monoclonales , Pared Celular/genética , Pared Celular/ultraestructura , Celulosa/análisis , Carofíceas/genética , Carofíceas/ultraestructura , Ácido Edético/análogos & derivados , Ácido Edético/química , Embryophyta/química , Embryophyta/genética , Embryophyta/ultraestructura , Epítopos , Técnica del Anticuerpo Fluorescente , Genes de Plantas/genética , Glicoproteínas/análisis , Análisis por Micromatrices , Pectinas/análisis , Filogenia , Plantas , Hidróxido de Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA