Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chin Med ; 17(1): 134, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471367

RESUMEN

BACKGROUND: Hypoxia-induced pulmonary hypertension (HPH) is one of the fatal pathologies developed under hypobaric hypoxia and eventually leads to right ventricular (RV) remodeling and RV failure. Clinically, the mortality rate of RV failure caused by HPH is high and lacks effective drugs. Xinyang Tablet (XYT), a traditional Chinese medicine exhibits significant efficacy in the treatment of congestive heart failure and cardiac dysfunction. However, the effects of XYT on chronic hypoxia-induced RV failure are not clear. METHODS: The content of XYT was analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). Sprague-Dawley (SD) rats were housed in a hypobaric chamber (equal to the parameter in altitude 5500 m) for 21 days to obtain the RV remodeling model. Electrocardiogram (ECG) and hemodynamic parameters were measured by iWorx Acquisition & Analysis System. Pathological morphological changes in the RV and pulmonary vessels were observed by H&E staining and Masson's trichrome staining. Myocardial apoptosis was tested by TUNEL assay. Protein expression levels of TNF-α, IL-6, Bax, Bcl-2, and caspase-3 in the RV and H9c2 cells were detected by western blot. Meanwhile, H9c2 cells were induced by CoCl2 to establish a hypoxia injury model to verify the protective effect and mechanisms of XYT. A CCK-8 assay was performed to determine the viability of H9c2 cells. CoCl2-induced apoptosis was detected by Annexin-FITC/PI flow cytometry and Hoechst 33,258 staining. RESULTS: XYT remarkably improved RV hemodynamic disorder and ECG parameters. XYT attenuated hypoxia-induced pathological injury in RV and pulmonary vessels. We also observed that XYT treatment decreased the expression levels of TNF-α, IL-6, Bax/Bcl-2 ratio, and the numbers of myocardial apoptosis in RV. In H9c2 myocardial hypoxia model, XYT protected H9c2 cells against Cobalt chloride (CoCl2)-induced apoptosis. We also found that XYT could antagonize CoCl2-induced apoptosis through upregulating Bcl-2, inhibiting Bax and caspase-3 expression. CONCLUSIONS: We concluded that XYT improved hypoxia-induced RV remodeling and protected against cardiac injury by inhibiting apoptosis pathway in vivo and vitro models, which may be a promising therapeutic strategy for clinical management of hypoxia-induced cardiac injury.

2.
Nan Fang Yi Ke Da Xue Xue Bao ; 36(5): 604-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27222171

RESUMEN

OBJECTIVE: To investigate the protective effects of tea polyphenols (TP) against myocardial ischemia/reperfusion (IR) injuries and explore the possible mechanisms. METHODS: Langendorff-perfused rat hearts were subjected to ischemia for 30 min followed by reperfusion for another 30 min. Myocardial function indices were measured by a left ventricular cannula via a pressure transducer connected to the polygraph in isolated Langendorff hearts and energy metabolism was measured using (31)P nuclear magnetic resonance (NMR) spectroscopy. Whole-cell atch-clamp technique was used to record calcium inward current (I(Ca-L)) in cultured rat cardiac myocytes. RESULTS: Compared with the control hearts, the ex vivo rat hearts with 2.5 mg/L TP treatment showed significantly increased left ventricular developed pressure (LVDP), maximal rise rate of LVDP (+dp/d(tmax)), maximal fall rate of LVDP (-dp/dt(max)), and coronary flow (CF) (P<0.05). During both cardiac ischemia and reperfusion phase, ATP and PCr levels were elevated significantly in TP-treated hearts compared with those in the control hearts (P<0.05). In cultured rat cardiac myocytes, ICa-L was remarkably decreased by TP at the doses of 2.5 and 5.0 mg/L (P<0.01). CONCLUSION: Our results support a possible protective role of TP against myocardial IR injury by improving myocardial energy metabolism and inhibiting I(Ca-L) in the cardiac myocytes.


Asunto(s)
Calcio/metabolismo , Metabolismo Energético , Daño por Reperfusión Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Polifenoles/farmacología , Animales , Canales de Calcio/metabolismo , Células Cultivadas , Corazón/efectos de los fármacos , Técnicas In Vitro , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA