Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fitoterapia ; 174: 105867, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382891

RESUMEN

The concept of multi-target-directed ligands offers fresh perspectives for the creation of brand-new Alzheimer's disease medications. To explore their potential as multi-targeted anti-Alzheimer's drugs, eighteen new bakuchiol derivatives were designed, synthesized, and evaluated. The structures of the new compounds were elucidated by IR, NMR, and HRMS. Eighteen compounds were assayed for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in vitro using Ellman's method. It was shown that most of the compounds inhibited AChE and BuChE to varying degrees, but the inhibitory effect on AChE was relatively strong, with fourteen compounds showing inhibition of >50% at the concentration of 200 µM. Among them, compound 3g (IC50 = 32.07 ± 2.00 µM) and compound 3n (IC50 = 34.78 ± 0.34 µM) showed potent AChE inhibitory activities. Molecular docking studies and molecular dynamics simulation showed that compound 3g interacts with key amino acids at the catalytically active site (CAS) and peripheral anionic site (PAS) of acetylcholinesterase and binds stably to acetylcholinesterase. On the other hand, compounds 3n and 3q significantly reduced the pro-inflammatory cytokines TNF-α and IL-6 released from LPS-induced RAW 264.7 macrophages. Compound 3n possessed both anti-acetylcholinesterase activity and anti-inflammatory properties. Therefore, an in-depth study of compound 3n is expected to be a multi-targeted anti-AD drug.


Asunto(s)
Enfermedad de Alzheimer , Butirilcolinesterasa , Fenoles , Humanos , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Diseño de Fármacos
2.
Fish Shellfish Immunol ; 142: 109152, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37821005

RESUMEN

Abamectin (ABM) abuse contaminated aquatic environment and posed a potential threat to fish health as well as public safety. Silybin (SIL), a flavonoid, has been widely used as a novel feed additive to promote fish health. This research was to explore the potential antagonistic mechanism between ABM and SIL on brain and liver toxicity was investigated in common carp. Sixty carp were divided into four groups at random: the Control group, the SIL group, the ABM group, and ABM + SIL group. This experiment lasted for 30 d. According to behavioral observation, the detection of levels of acetylcholinesterase (AchE), iron, and mRNA expression levels of blood-brain barrier (BBB) related tight junction proteins (ZO-1, Claudin7, Occludin, MMP2, MMP9, and MMP13) in brain tissues, it was found that SIL relieved neurobehavioral disorders caused by ABM-induced BBB destruction in carp. H&E staining showed SIL mitigated nerve injury and liver injury caused by ABM. Oil Red O staining and liver-related parameters showed that SIL alleviated hepatotoxicity and lipid metabolism disorder caused by ABM exposure. Furthermore, this work also explored the specific molecular mechanism of SIL in liver protection and neuroprotection. It was shown that SIL lowered ROS levels in liver and brain tissues via the GSK-3ß/TSC2/TOR pathway. Simultaneously, SIL inhibited NF-κB signaling pathway and played an anti-inflammatory role. In conclusion, we believed that SIL supplementation has a protective effect on the brain and liver by regulating oxidative stress and inflammation.


Asunto(s)
Carpas , Animales , Silibina/farmacología , Acetilcolinesterasa , Glucógeno Sintasa Quinasa 3 beta , Hígado , Encéfalo
3.
Fish Physiol Biochem ; 49(5): 895-910, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37542703

RESUMEN

The aim of this study was to investigate the splenic tissue damage of environmental biological drug avermectin to freshwater cultured carp and to evaluate the effect of silybin on the splenic tissue damage of carp induced by avermectin. A total of 60 carp were divided into 4 groups with 15 carp in each group, including the control group fed with basic diet, experimental group fed with basal diet and exposed to avermectin (avermectin group), experimental group fed with basal diet supplement silybin (silybin group), and experimental group fed with basal diet supplement silybin and exposed to avermectin (silybin + avermectin group). The whole test period lasted for 30 days, and spleen tissue was collected for analysis. In this study, H&E staining, mitochondrial purification and membrane potential detection, ATP detection, DHE staining, biochemical tests, qPCR, immunohistochemistry, and apoptosis staining were used to evaluate the biological processes of spleen tissue injury, mitochondrial function, oxidative stress, apoptosis, and endoplasmic reticulum stress. The results show that silybin protected carp splenic tissue damage caused by chronic avermectin exposure, decreased mitochondrial membrane potential, decreased ATP content, ROS accumulation, oxidative stress, apoptosis, and endoplasmic reticulum stress. Silybin may ameliorate the splenic tissue damage of cultured freshwater carp caused by environmental biopesticide avermectin by alleviating mitochondrial dysfunction and inhibiting PERK-ATF4-CHOP-driven mitochondrial apoptosis. Adding silybin into the diet becomes a feasible strategy to resist the pollution of avermectin and provides a theoretical basis for creating a good living environment for freshwater carp.


Asunto(s)
Carpas , Bazo , Animales , Silibina/farmacología , Apoptosis , Transducción de Señal , Adenosina Trifosfato
4.
Pestic Biochem Physiol ; 187: 105190, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36127050

RESUMEN

Avermectin is one of the most widely used pesticides, but its toxicity to non-target organisms, especially aquatic organisms, has been ignored. Therefore, an acute spleen injury model of avermectin in carp was established to assess the non-target toxicity of avermectin to carp. In this study, 3.005 µg/L and 12.02 µg/L were set as the low and high dose groups of avermectin, respectively, and a four days acute exposure experiment was conducted. Pathological structure observation showed that avermectin damaged spleen tissue structure and produced inflammatory cell infiltration. Biochemical analysis showed that avermectin significantly reduced the activities of antioxidant enzymes CAT, SOD, and GSH-px, but increased the content of MDA, a marker of oxidative damage. Avermectin exposure also significantly increased the transcription levels of inflammatory cytokines such as IL-1ß, IL-6, TNF-α, and INOS, and also significantly enhanced the activity of the inflammatory mediator iNOS, but suppressed the transcription levels of anti-inflammatory factors TGF-ß1 and IL-10. In addition, TUNEL detected that the apoptosis rate increased significantly with the increase of avermectin dosage, and the transcription levels of apoptosis-related genes BAX, P53, and Caspase 3/9 also increased in a dose-dependent manner. This study is preliminary evidence that avermectin induces spleen injury in carp through oxidative stress, inflammation, and apoptosis, which has important implications for subsequent studies on the effects of avermectin on non-target organisms.


Asunto(s)
Carpas , Plaguicidas , Animales , Antioxidantes/metabolismo , Apoptosis , Carpas/metabolismo , Caspasa 3/metabolismo , Inflamación/inducido químicamente , Mediadores de Inflamación/farmacología , Interleucina-10/metabolismo , Interleucina-10/farmacología , Interleucina-6/farmacología , Ivermectina/análogos & derivados , Estrés Oxidativo , Plaguicidas/farmacología , Bazo/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Factor de Necrosis Tumoral alfa , Proteína p53 Supresora de Tumor , Proteína X Asociada a bcl-2
5.
Ecotoxicol Environ Saf ; 244: 114081, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113268

RESUMEN

Excessive use of hard-to-degrade pesticides threatens the ecological health of aquatic systems. This study aimed to investigate difenoconazole (DFZ) residues in the environment induced neurotoxicity in carp and the underlying mechanisms. A total of thirty-six carps were divided into three groups and exposed to 0, 0.5, and 2.0 mg/L DFZ for 96 h, respectively. The alterations in behavior and blood-brain barrier (BBB) were examined, and potential mechanisms were explored using immunological assays and biochemical methods. The results showed that DFZ exposure caused behavioral freezing, reduced feeding, and neuronal necrosis in carp. Mechanistically, DFZ triggered ROS accumulation and destroyed the balance between oxidation and antioxidation with increased lipid peroxidation product MDA contents and reduced antioxidant enzymes SOD and CAT activities in the carp brain by inhibiting the NF-E2-related factor 2 (Nrf2) pathway. The activation of oxidative stress further reduced tight junction proteins and MMP levels, thereby destroying BBB and leading to DFZ leakage into the brain. Increased BBB permeability additionally led to DFZ activation of nuclear factor kappa-B signaling-mediated inflammatory cytokine storm, exacerbating neuroinflammation. Meanwhile, DFZ exposure activated mitochondria-associated apoptosis in the carp's brain by up-regulating Bcl-2 associated X protein, cleaved-caspase3, and cytochrome C and decreasing B-cell lymphoma-2 levels. Interestingly, the carp's brain initiated a protective autophagic response via the PI3K/AKT/TOR pathway intending to counteract the neurotoxicity of DFZ. Overall, we concluded that accumulation of DFZ at high concentrations in the aquatic systems disrupted the BBB and resulted in neurotoxicity in carp through inhibition of Nrf2 pathway-mediated ROS accumulation. This study provides a reference for monitoring DFZ residues in the environment and a new target for the treatment of DFZ-induced neurotoxicity in carp.


Asunto(s)
Carpas , Plaguicidas , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Barrera Hematoencefálica/metabolismo , Carpas/metabolismo , Citocromos c/metabolismo , Dieta , Suplementos Dietéticos/análisis , Dioxolanos , Proteínas de Peces/metabolismo , Inmunidad Innata , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno , Superóxido Dismutasa/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Triazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA