Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 114: 154750, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990007

RESUMEN

BACKGROUND: The occurrence of severe liver injury by the herbal medicine Polygoni Multiflori Radix (PMR) has drawn significant attention. The fact that processing attenuates PMR-induced hepatotoxicity has been well accepted, but the mechanisms are still ambiguous. PURPOSE: This study aimed to illuminate the mechanism of processing-based attenuation of PMR hepatotoxicity. METHODS: The contents of emodin-8-O-ß-d-glucoside (EG) and emodin (EMD) in raw and processed PMR were quantified. The difference in toxicokinetic behaviors of EG and EMD was determined in vivo, and the disposition properties of EG were investigated in vitro and in vivo. RESULTS: Decreased EG content was found in processed (black bean) PMR. Processed PMR showed reduced adverse effects relative to raw PMR. In addition, less hepatic protein adduction derived from EMD was produced in mice after exposure to processed PMR than that in animals receiving raw PMR. Glucose transporters SGLT1 and GLUT2 participated in the absorption of EG, and effective hydrolysis of EG to EMD took place in the intestinal epithelial cells during the process of absorption. Cytosolic broad-specificity ß-glucosidase and lactase phlorizin hydrolase, as well as intestinal flora, participated in the hydrolysis of EG. The circulated EMD resulting from the deglycosylation of EG executed the hepatotoxic action. CONCLUSION: EG is a pre-toxin and can be metabolically activated to EMD participating in the hepatotoxic event. The reduction of EG content due to processing is a key mechanistic factor that initiates the detoxification of PMR.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Emodina , Polygonum , Ratones , Animales , Glucósidos/toxicidad , Emodina/toxicidad , Medicamentos Herbarios Chinos/toxicidad , Raíces de Plantas
2.
Chem Biol Interact ; 368: 110234, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332690

RESUMEN

2,3,5,4'-Tetrahydroxy stilbene-2-Ο-ß-D-glucoside (TSG) and emodin (EMD) are two main components of Polygonum multiflorum Thunb. (PMT). Its root is widely used as herbal medicine and supplement. However, PMT-induced liver injury has drawn increasing attention. The purpose of this study was to investigate the interaction of TSG with EMD in the aspects of enzymology, pharmacokinetics, and hepatotoxicity. Co-administration with TSG increased internal exposure of EMD, EMD-derived hepatic protein adduction, and EMD-induced liver injury in mice. Mouse and human liver microsomal incubation study demonstrated that co-incubation with TSG decreased the formation of hydroxylation metabolites of EMD. Human recombinant cytochrome P450 enzyme incubation study showed that TSG induced time-, concentration-, NADPH-dependent and irreversible inhibition of CYP2C19 and CYP3A4. An epoxide metabolite derived from TSG was responsible for the observed enzyme inactivations. The findings allow us to better understand the mechanisms by which herbal processing detoxifies raw PMT.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Emodina , Glucósidos , Estilbenos , Animales , Humanos , Ratones , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP3A , Emodina/toxicidad , Glucósidos/farmacología , Estilbenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA