Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Funct ; 15(2): 906-916, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38168829

RESUMEN

Pregnancy is a dynamic state involving rapid physiological changes in metabolism, affecting the health and development of the offspring. During pregnancy, the placenta constitutes a physical and immunological barrier to provide fetal nutrition through the maternal blood and prevent the exposure of the fetus to dangerous signals. Metabolic changes in the plasma, the fecal microbiota profile, and functional regulation in the placenta were studied in sows supplied with a ferrous-sucrose complex (FeSuc) from late gestation to parturition. The results revealed that maternal FeSuc supplementation enhanced arginine and proline metabolism, glutathione metabolism, with increased glutamic acid, beta-D-glucosamine, L-proline, 1-butylamine, and succinic acid and reduced sphingosine and chenodeoxycholic acid sulfate levels in the plasma. Moreover, significantly increased abundances of Christensenellaceae_R-7_group, Prevotellaceae_NK3B31_group, and Lachnospiraceae_NK4B4_group were detected in the feces of sows from the FeSuc group (P < 0.05). Spearman's correlation analysis indicated that Prevotellaceae_NK3B31_group abundances were positively correlated with glutamic acid, indoxyl sulfate, acetyl-DL-leucine, and beta-D-glucosamine, while Christensenellaceae_R-7_group was positively correlated with beta-D-glucosamine. Furthermore, maternal FeSuc supplementation significantly increased neonatal glucose (P < 0.01) and iron (P < 0.01) in the neonatal serum, significantly increased IL-10 and TGF-ß1 levels in the neonatal liver (P < 0.01) and jejunum (P < 0.05), promoted the transcription of immune molecules in the placenta, and significantly increased the protein expressions of EGF (P < 0.05), PI3K (P < 0.01), p-PI3K (P < 0.001), p-AKT (P < 0.01), and glucose transporter 1 (GLUT1) (P < 0.001) in the placenta. The current study demonstrated that FeSuc supplementation regulated maternal metabolism processes by altering the fecal microbial composition and improved neonatal immunity and placental glucose transportation by activating the EGF/PI3K/AKT signaling pathways in sows.


Asunto(s)
Microbiota , Placenta , Embarazo , Animales , Femenino , Porcinos , Placenta/metabolismo , Glucosa/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácido Glutámico/metabolismo , Suplementos Dietéticos , Transducción de Señal , Glucosamina
2.
Sci China Life Sci ; 66(9): 2086-2098, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37530911

RESUMEN

Iron is an essential trace element for both the host and resident microbes in the gut. In this study, iron was administered orally and parenterally to anemic piglets to investigate the role of iron in host-microbiota interaction and its effects on intestinal mucosal growth and immune plasticity. We found that oral iron administration easily increased the abundance of Proteobacteria and Escherichia-Shigella, and decreased the abundance of Lactobacillus in the ileum. Furthermore, similar bacterial changes, namely an increase in Proteobacteria, Escherichia-Shigella, and Fusobacterium and a reduction in the Christensenellaceae_R-7_group, were observed in the colon of both iron-supplemented groups. Spearman's correlation analysis indicated that the changed Fusobacterium, Fusobacteria and Proteobacteria in the colon were positively correlated with hemoglobin, colon and spleen iron levels. Nevertheless, it was found that activated mTOR1 signaling, improved villous height and crypt depth in the ileum, enhanced immune communication, and increased protein expression of IL-22 and IL-10 in the colon of both iron-supplemented groups. In conclusion, the benefits of improved host iron outweigh the risks of altered gut microbiota for intestinal mucosal growth and immune regulation in treating iron deficiency anemia.


Asunto(s)
Microbioma Gastrointestinal , Hierro , Animales , Porcinos , Hierro/metabolismo , Mucosa Intestinal/microbiología , Íleon/metabolismo , Íleon/microbiología , Colon
3.
J Agric Food Chem ; 70(16): 4942-4951, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35420025

RESUMEN

Multi-omics were applied to compare the risks and benefits of ferrous sulfate (FeSO4) and ferrous bisglycinate (FebisGly) in pigs in the current study. The FebisGly group showed reduced triglyceride (TG) and triglyceride/total cholesterol (TG/CHOL) values in the serum and reduced malondialdehyde (MDA) and increased glutathione (GSH) levels in the duodenum. Transcriptome analysis revealed that differentially expressed genes in the duodenum were enriched in oxidative phosphorylation, AMPK, and FOXO signaling pathways between FeSO4 and FebisGly groups. AMPK phosphorylation and FOXO3 protein expressions were significantly increased in the FebisGly group. Bacterial 16S rRNA gene sequence analysis revealed significantly reduced alpha diversity in the FeSO4 group and increased Firmicutes, reduced Bacteroidetes, and Proteobacteria abundances in the FebisGly group. Targeted metabolome revealed notably increased lithocholic acid (LCA), glycolithocholic acid (GLCA), hyodeoxycholic acid (HDCA), ursodeoxycholic acid (UDCA), and glycoursodeoxycholic acid (GUDCA) in the FebisGly group. RDA analysis indicated that Fusobacteria was positively correlated with TG and TG/high-density lipoprotein in the FeSO4 group while Christensenellaceae_R-7_group, Ruminococcaceae_UCG-002, and Ruminococcaceae_UCG-005 were positively correlated with UDCA and GLCA in the FebisGly group. According to the current study, FebisGly improves serum lipid metabolism, modulates intestinal antioxidant capacity via the AMPK/FOXO pathway, and reconstitutes gut microbiota and bile acid profiles in pigs.


Asunto(s)
Microbioma Gastrointestinal , Proteínas Quinasas Activadas por AMP/genética , Animales , Antioxidantes , Ácidos y Sales Biliares , Suplementos Dietéticos , Compuestos Ferrosos , Microbioma Gastrointestinal/genética , Glicina , ARN Ribosómico 16S/genética , Porcinos , Triglicéridos
4.
J Trace Elem Med Biol ; 71: 126950, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35183047

RESUMEN

BACKGROUND: Iron deficiency and overload during pregnancy damage to maternal and fetal health. Placenta as an organ for the transport of nutrients between mother and fetus protects fetus from the harmful effects of iron deficiency and iron overload through regulation of placental iron homeostasis. METHODS: To determine the effect of dietary iron supplementation during pregnancy on reproduction and the mechanism of placental iron regulation, we designed dietary high iron (HI: 344 mg/kg), medium iron (MI: 40 mg/kg), low iron (LI: 2 mg/kg) groups of pregnant female mice fed ferrous citrate 2 weeks before mating to 18.5 days of gestation. RESULTS: We find dietary iron supplementation during pregnancy effect maternal liver iron, placental iron, hemoglobin and fetal iron. Dietary iron significantly improves reproductive performance as litter weight and fetal weight. Correlation analysis suggest placental iron increased with liver iron, higher and lower liver iron is not conducive to the accumulation of fetal iron, placental iron deficiency and excess reduce litter weight. Placental transcriptome analysis revealed DEGs with the same trend in HI and LI groups compared with MI group, dietary iron may change biology process of ion transport and gland development in placenta. Granzyme may affect the placental trophoblast structure prior to delivery with iron overload uniquely. CONCLUSION: This research highlights the importance of moderate iron supplements in pregnancy due to damage of reproduction by affecting placental function under different dose of maternal iron supplementation.


Asunto(s)
Deficiencias de Hierro , Sobrecarga de Hierro , Embarazo , Femenino , Ratones , Animales , Hierro/farmacología , Placenta , Hierro de la Dieta/farmacología , Suplementos Dietéticos
5.
J Anim Sci ; 100(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35022729

RESUMEN

The iron status of sows has a great influence on reproductive performance. Iron deficiency reduces reproductive performance and newborn piglet survival rate of sow. The hemoglobin is a potential predictor for the iron status of sows and is convenient for rapid detection in pig farms. However, the relationship between iron status, hemoglobin, placental trace elements, and reproductive performance remains unclear. In this study, the hemoglobin and reproductive performance of more than 500 sows with first to sixth parities at different gestation stages (25, 55, 75, 95, and 110 d of gestation) in two large-scale sow farms were collected, and the content of placental Fe, Zn, Mn, and Cu was analyzed. The results show that hemoglobin levels of sows during pregnancy (days 75, 95, and 110) decreased significantly (P < 0.001). As the parity increases, the hemoglobin levels of sows at days 25 and 55 of gestation and placental mineral element contents including Fe, Zn, Mn, and Cu at delivery decreased (P < 0.05), while the litter size, birth alive, and litter weights increased gradually (P < 0.001). Furthermore, hemoglobin during pregnancy had a negative linear correlation with litter weight and average weight (P < 0.05), and higher hemoglobin at day 25 of gestation may reduce the number of stillbirths (P = 0.05), but higher hemoglobin at day 110 of gestation may tend to be a benefit for the birth (P = 0.01). And there was a significant positive linear correlation between hemoglobin at day 110 of gestation and placental Fe and Mn levels (P = 0.002, P = 0.013). There was also a significant positive linear correlation among Fe, Zn, Mn, and Cu in the placenta (P < 0.001). The levels of Fe, Zn, and Mn in the placental at delivery were positively related to the average weight of the fetus (P = 0.048, P = 0.027, P = 0.047), and placental Cu was linearly correlated with litter size (P = 0.029). Our research revealed that the requirements for iron during gestation were varied in different gestation periods and parities. The feeds should be adjusted according to the gestation periods, parities, or iron status to meet the iron requirements of sows and fetal pigs.


Iron deficiency and iron excess may cause adverse outcomes during pregnancy. In sows' feed, iron is added as ferrous sulfate, ferrous glycine, or other forms to improve their reproductive performance and prevent iron-deficiency anemia in their offspring. However, it is always ineffective and iron-deficiency anemia often occurs in piglets. To explore the iron requirements in pregnant sows, we conducted a large-scale farm study to track the hemoglobin levels, placental trace element content, and reproductive performances of hundreds of sows. The correlation between the hemoglobin levels, placental trace element content, and reproductive performance indicators of sows during pregnancy at different parities was analyzed. We found that pregnancy hemoglobin level of sows decreases during the gestation and varies at different parities. The hemoglobin level of sows during pregnancy was linearly negatively correlated with reproductive performance. The content of iron, zinc, manganese, and copper in the placenta was linearly positively correlated. Our results revealed that iron deficiency or excess in sows' feed may not be conducive to the improvement of reproductive performance, and the optimal iron supplementation dose during pregnancy may depend on the iron status and number of fetuses of sow.


Asunto(s)
Oligoelementos , Alimentación Animal/análisis , Animales , Femenino , Lactancia , Tamaño de la Camada , Paridad , Placenta , Embarazo , Reproducción , Porcinos
6.
J Sci Food Agric ; 101(7): 2712-2717, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33124038

RESUMEN

BACKGROUND: Iron supplements are limited by their poor absorption and low efficacy. A circadian feeding schedule would affect the circadian rhythm and improve nutrient metabolism. In this study, 18 iron-deficient piglets were randomly assigned to three groups: a control group receiving a constant diet with mid-iron (MI), a 'HL' group receiving a high-iron (HI) diet at 8:00 h and a low-iron (LI) diet at 18:00, and an 'LH' group receiving a LI diet at 8:00 and a HI diet at 18:00. The effects of circadian iron administration on iron absorption, iron status, and biological rhythm in iron-deficient piglets were investigated. RESULTS: Serum iron and hemoglobin improved significantly (P < 0.05) but did not significantly differ in the circadian iron-feeding groups (P > 0.05). Iron concentration in the liver and spleen was significantly higher in the LH group than in the HL group (P < 0.05), and mRNA expression of divalent metal transport 1 (DMT1), cytochrome B (CYBRD1) and ferroportin (FPN) genes in the duodenum was significantly elevated in the LH group (P < 0.05). The clock-related genes showed differential expression in the duodenum, with greater mRNA expression for period (Per2) and cryptochrome (Cry1 and Cry2) in the LH group (P < 0.05). CONCLUSION: Circadian iron administration affected iron absorption and iron storage in pigs. Iron supplementation in the evening might be a more effective pattern for iron utilization. The rhythmic system in the intestine, driven by the time, played an important role in this process. © 2020 Society of Chemical Industry.


Asunto(s)
Ritmo Circadiano , Hierro/metabolismo , Porcinos/metabolismo , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Citocromos b/genética , Citocromos b/metabolismo , Dieta , Duodeno/metabolismo , Femenino , Hígado/metabolismo , Masculino , Bazo/metabolismo , Porcinos/genética
7.
Animals (Basel) ; 10(8)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764239

RESUMEN

Few studies focused on the effects of iron on characterizing alterations of metabolic processes in neonatal piglets. In the present study, 16 neonatal piglets were randomly assigned to two groups. In the first group piglets were given an intramuscularly injection of iron dextran at 150 mg as a positive control (CON) and the second group were not supplemented with iron as a negative control for iron deficiency (ID). At day 8, iron status, serum biochemical parameters, serum metabolome, hepatic histology, and hepatic expression of genes for the metabolism were analyzed. Results indicated that piglets without iron supplementation had significantly reduced iron values and increased blood urea nitrogen concentrations at day 8 (p < 0.05). Analysis of serum metabolome revealed that concentrations of serum lysine, leucine, tyrosine, methionine, and cholesterol were significantly decreased while concentrations of 3-Methyldioxyindole, chenodeoxycholate acid, indoleacetic acid, icosadienoic acid, phenylpyruvic acid, pantothenic acid, ursocholic acid, and cholic acid were significantly increased in iron deficient piglets (p < 0.05). Furthermore, expressions of cyp7a1 and the urea cycle enzyme (ornithinetranscarbamoylase and argininosuccinate synthetase) were significantly increased in iron deficient pigs (p < 0.05). The present experimental results indicated that neonatal piglets without iron supplementation drop to borderline anemia within 8 days after birth. Iron deficiency led to a series of metabolic changes involved in tyrosine metabolism, phenylalanine metabolism, bile secretion, primary bile acid biosynthesis, steroid biosynthesis, and upregulated activities of the urea cycle enzymes in the liver of neonatal piglets, suggesting early effects on metabolic health of neonatal piglets.

8.
J Anim Sci ; 98(8)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32756964

RESUMEN

The purpose of the present study was to discover the effects of iron on the intestinal development and epithelial maturation of suckling piglets. Twenty-seven newborn male piglets from 9 sows (3 piglets per sow), with similar body weight, were selected. The 3 piglets from the same sow were randomly divided into 1 of the 3 groups. The piglets were orally administrated with 2 mL of normal saline (CON group) or with 25 mg of iron by ferrous sulfate (OAFe group; dissolved in normal saline) on the 2nd, 7th, 12th, and 17th day, respectively, or intramuscularly injected with 100 mg of iron by iron dextran (IMFe group) on the 2nd day. The slaughter was performed on the 21st day and intestinal samples were collected. Compared with the CON group, iron supplementation significantly increased the length (P < 0.001), weight (P < 0.001), relative weight (P < 0.001), and the length:weight ratio (P < 0.001) of the small intestine in both OAFe and IMFe groups. The villus height (P < 0.001), crypt depth (CD) (P < 0.001), villus width (P = 0.002), and surface area (P < 0.001) in the jejunum of IMFe and OAFe piglets were also greater than those in CON piglets. The mRNA expression of trehalase (Treh; P = 0.002) and sucrase isomaltase (Sis; P = 0.043), markers of epithelial maturation, increased in OAFe and IMFe piglets, respectively. Moreover, enterocyte vacuolization, observed in fetal-type enterocyte, was reduced in OAFe and IMFe piglets, compared with CON piglets. However, no significant difference in the expression of the target genes of wnt/ß-catenin signaling pathway was observed. The results indicated that both oral administration and intramuscular injection with iron promoted intestinal development and epithelial maturation in suckling piglets and that the effects of iron may be independent of wnt/ß-catenin signaling.


Asunto(s)
Suplementos Dietéticos/análisis , Hierro/administración & dosificación , Porcinos/crecimiento & desarrollo , Administración Oral , Animales , Epitelio/efectos de los fármacos , Epitelio/crecimiento & desarrollo , Femenino , Inyecciones Intramusculares , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Intestinos/crecimiento & desarrollo , Hierro/metabolismo , Yeyuno/efectos de los fármacos , Yeyuno/crecimiento & desarrollo , Yeyuno/metabolismo , Masculino , Distribución Aleatoria
9.
J Trace Elem Med Biol ; 61: 126561, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32480055

RESUMEN

BACKGROUND: Copper is an essential microelement for animals and has been used at pharmacological doses in weaned piglets to improve growth performance. However, it also induces systemic oxidative stress after short-term feeding. The aim of this study was to investigate the effects of dose and duration of dietary copper on lipid peroxidation and oxidative stress status in model of weaned piglets. METHODS: A total of 48 crossbred piglets (weaned at 21d, weight ∼8.2 kg) were randomly assigned into 4 groups of 12 in each. The control group and 3 treatment groups fed with basal diet supplemented with 20, 100 and 200 mg/kg copper as copper sulfate for 3 and 6 weeks, respectively. RESULTS: Dietary copper supplementation significantly affected the activities of ALP, LDH, LIPC and the levels of Ca and TG in serum as well as the copper and zinc deposition in liver. Increased MDA concentrations, and decreased GPX, CP and CAT concentrations in serum were found in 0, 100 and 200 mg Cu/kg diet groups at 3 weeks post weaning. Hepatic lipid peroxidation was also induced in these groups indicated from hepatic SOD1, GPX1, CAT, CP, MT1A and MT2A transcriptional levels. Those adverse symptoms were alleviative at 6 weeks post weaning. The hepatic Cu and Zn concentrations, serum MDA concentrations, and serum CAT and GPX activities were significantly correlated with Actinobacillus, Lactobacillus, Sarcina, Helicobacter, Campylobacterales, which could affect the intestinal health further. CONCLUSION: These results indicated that copper deficiency or over supplementation would affect the systemic lipid peroxidation. These adverse changes were not observed when the dietary copper concentration at 20 mg Cu/kg diet. The results suggested the appropriate dietary copper concentration is around 20 mg Cu/kg diet, and its range might be much stricter than we thought.

10.
Biol Trace Elem Res ; 195(1): 117-124, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31377936

RESUMEN

The present study was to evaluate the consequences of iron status across oral and parenteral iron administrations in prevention of iron deficiency anemia. A total of 24 one-day-old male neonatal piglets were allocated into three groups given non-iron supplementation (NON), intramuscular iron dextran injection (FeDex), and oral administration of ferrous glycine chelate (FeGly), respectively. At day 8, no significant differences in final body weight, average weight gain, and tissue coefficients were observed among three groups (P > 0.05). Both oral FeGly and FeDex injection significantly increased serum iron, ferritin, hemoglobin, and tissue iron deposition (P < 0.05). However, FeDex-injected supplementation resulted in rapidly rising hepcidin levels and hepatic iron deposition (P < 0.05). In addition, compared to parenteral iron supplementation, greater serum IgA level, SOD, and GSH-Px activities, lower expressions of IL-1ß and TNF-α in the liver, and lower expressions of IL-6 and TNF-α in the spleen were found in oral iron piglets (P < 0.05). According to our results, oral administration of ferrous glycine chelate improved iron homeostasis, and oxidative and immune status in anemic neonatal pigs.


Asunto(s)
Anemia Ferropénica/tratamiento farmacológico , Homeostasis/efectos de los fármacos , Quelantes del Hierro/farmacología , Complejo Hierro-Dextran/farmacología , Hierro/inmunología , Administración Oral , Anemia Ferropénica/inmunología , Animales , Homeostasis/inmunología , Infusiones Parenterales , Quelantes del Hierro/administración & dosificación , Complejo Hierro-Dextran/administración & dosificación , Masculino , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/inmunología , Porcinos , Aumento de Peso/efectos de los fármacos
11.
Front Microbiol ; 10: 2808, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921011

RESUMEN

Copper is an essential microelement for animals, and not only it has been used as a feed additive at pharmacological doses in swine production to improve growth performance, but it also has an effect on intestinal microbes by enhancing host bacterial resistance. However, there are few reports on the effects of pharmacological doses of copper on intestinal microorganisms and the antimicrobial resistance profiles of pathogenic bacteria, such as Escherichia coli, in pigs. Therefore, this study aimed to investigate the effects of pharmacological doses of copper on the microbial communities in the hindgut and the antimicrobial resistance profiles of E. coli in weaned piglets. Twenty-four healthy weaned piglets aged 21 ± 1 days and with an average weight of 7.27 ± 0.46 kg were randomly divided into four groups. The control group was fed a basal diet, while the treatment groups were fed a basal diet supplemented with 20, 100, or 200 mg copper/kg feed, in the form of CuSO4. Anal swabs were collected at 0, 21, and 42 days of the trial, and E. coli was isolated. Meanwhile, the contents of the ileum and cecum from the control and 200 mg copper/kg feed groups were collected at 21 and 42 days for microbial community analysis and E. coli isolation. All isolated E. coli strains were used for antimicrobial resistance profile analysis. A pharmacological dose of copper did not significantly change the diversity, but significantly affected the composition, of microbial communities in the ileum and cecum. Moreover, it affected the microbial metabolic functions of energy metabolism, protein metabolism, and amino acid biosynthesis. Specifically, copper treatment increased the richness of E. coli in the hindgut and the rates of E. coli resistance to chloramphenicol and ciprofloxacin. Moreover, the rate of E. coli resistance to multiple drugs increased in the ileum of pigs fed a pharmacological dose of copper. Thus, a pharmacological dose of copper affected the composition of the microbial community, increased the antimicrobial resistance rates of intestinal E. coli, and was most likely harmful to the health of piglets at the early stage after weaning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA