Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Animal ; 13(7): 1421-1431, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30488812

RESUMEN

Optimizing milk production efficiency implies diets allowing low methane (CH4) emissions and high dairy performance. We hypothesize that nature of energy (starch v. lipids) and lipid supplement types (monounsaturated fatty acid (MUFA) v. polyunsaturated fatty acid (PUFA) mitigate CH4 emissions and can induce low milk fat content via different pathways. The main objective of this experiment was to study the effects of starch-rich or lipid-supplemented diets that induce milk fat depression (MFD) on rumen biohydrogenation (RBH) of unsaturated fatty acids (FA) and enteric CH4 emissions in dairy cows. Four multiparous lactating Holstein cows (days in milk=61±11 days) were used in a 4×4 Latin square design with four periods of 28 days. Four dietary treatments, three of which are likely to induce MFD, were based (dry matter basis) on 56% maize silage, 4% hay and 40% concentrates rich in: (1) saturated fatty acid (SFA) from Ca salts of palm oil (PALM); (2) starch from maize grain and wheat (MFD-Starch); (3) MUFA (cis-9 C18:1) from extruded rapeseeds (MFD-RS); and (4) PUFA (C18:2n-6) from extruded sunflower seeds (MFD-SF). Intake and milk production were measured daily. Milk composition and FA profile, CH4 emissions and total-tract digestibility were measured simultaneously when animals were in open-circuit respiration chambers. Fermentation parameters were analysed from rumen fluid samples taken before feeding. Dry matter intake, milk production, fat and protein contents, and CH4 emissions were similar among the four diets. We observed a higher milk SFA concentration with PALM and MFD-Starch, and lower milk MUFA and trans-10 C18:1 concentrations in comparison to MFD-RS and MFD-SF diets, while trans-11 C18:1 remained unchanged among diets. Milk total trans FA concentration was greater for MFD-SF than for PALM and MFD-Starch, with the value for MFD-RS being intermediate. Milk C18:3n-3 content was higher for MFD-RS than MFD-SF. The MFD seems more severe with MFD-SF and MFD-RS than PALM and MFD-Starch diets, because of a decrease in milk SFA concentration and a stronger shift from trans-11 C18:1 to trans-10 C18:1 in milk. The MFD-SF diet increased milk trans FA (+60%), trans-10 C18:1 (+31%), trans-10,cis-12 CLA (+27%) and PUFA (+36%) concentrations more than MFD-RS, which explains the numerically lowest milk fat yield and indicates that RBH pathways of PUFA differ between these two diets. Maize silage-based diets rich in starch or different unsaturated FA induced MFD with changes in milk FA profiles, but did not modify CH4 emissions.


Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Ácidos Grasos/biosíntesis , Lípidos/administración & dosificación , Metano/biosíntesis , Leche/química , Animales , Depresión , Carbohidratos de la Dieta , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/metabolismo , Suplementos Dietéticos , Ácidos Grasos Monoinsaturados/metabolismo , Femenino , Fermentación , Lactancia , Lípidos/análisis , Metano/metabolismo , Leche/metabolismo , Aceite de Palma , Poaceae/metabolismo , Rumen/metabolismo , Ensilaje/análisis , Almidón/administración & dosificación , Almidón/metabolismo , Zea mays/metabolismo
2.
J Dairy Sci ; 101(7): 6085-6097, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29680648

RESUMEN

The aim of the study was to compare the effect of fiber- or starch-rich diets based on grass silage, supplemented or not with bicarbonate, on CH4 emissions and milk fatty acid (FA) profile in dairy cows. The experiment was conducted as a 4 × 4 Latin square design with a 2 × 2 factorial arrangement: carbohydrate type [starch- or fiber-rich diets with dietary starch level of 23.1 and 5.9% on a dry matter basis, respectively], without or with bicarbonate addition [0 and 1% of the dry matter intake, respectively]. Four multiparous lactating Holstein cows were fed 4 diets with 42% grass silage, 8% hay, and 50% concentrate in 4 consecutive 4-wk periods: (1) starch-rich diet, (2) starch-rich diet with bicarbonate, (3) fiber-rich diet, and (4) fiber-rich diet with bicarbonate. Intake and milk production were measured daily and milk composition was measured weekly; CH4 emission and total-tract digestibility were measured simultaneously (5 d, wk 4) when animals were in open-circuit respiration chambers. Sensors continuously monitored rumen pH (3 d, wk 4), and fermentation parameters were analyzed from rumen fluid samples taken before feeding (1 d, wk 3). Cows fed starch-rich diets had less CH4 emissions (on average, -18% in g/d; -15% in g/kg of dry matter intake; -19% in g/kg of milk) compared with fiber-rich diets. Carbohydrate type did not affect digestion of nutrients, except starch, which increased with starch-rich diets. The decrease in rumen protozoa number (-36%) and the shift in rumen fermentation toward propionate at the expense of butyrate for cows fed the starch-rich diets may be the main factor in reducing CH4 emissions. Milk of cows fed starch-rich diets had lower concentrations in trans-11 C18:1, sum of cis-C18, cis-9,trans-11 conjugated linoleic acid (CLA), and sum of CLA, along with greater concentration of some minor isomers of CLA and saturated FA in comparison to the fiber-rich diet. Bicarbonate addition did not influence CH4 emissions or nutrient digestibility regardless of the carbohydrate type in the diet. Rumen pH increased with bicarbonate addition, whereas other rumen parameters and milk FA composition were almost comparable between diets. Feeding dairy cows a starch-rich diet based on grass silage helps to limit the negative environmental effect of ruminants, but does not lead to greater milk nutritional value because milk saturated FA content is increased.


Asunto(s)
Bicarbonatos/administración & dosificación , Bovinos/metabolismo , Ácidos Grasos/análisis , Metano/biosíntesis , Leche/química , Animales , Bicarbonatos/metabolismo , Dieta , Carbohidratos de la Dieta/administración & dosificación , Carbohidratos de la Dieta/metabolismo , Digestión , Femenino , Fermentación , Lactancia , Poaceae , Rumen , Ensilaje
3.
Animal ; 12(3): 501-507, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28807084

RESUMEN

The combination of linseed and nitrate is known to decrease enteric methane emission in dairy cows but few studies have been carried out in fattening cattle for animal liveweight gain, enteric methane emission, animal health and presence of residues in beef products. To address this gap, 16 young bulls received a control (C) diet between weaning at 9 months and 14 months, then were split into two groups of eight balanced on feed intake, BW gain and methane emission to receive either the C diet or a diet moderately supplemented with extruded linseed and calcium nitrate (LN) for 2 months before being slaughtered. On a dry matter (DM) basis, the C diet contained 70% baled grass silage and 30% concentrate mainly made of maize, wheat and rapeseed meal. In the LN diet, rapeseed meal and a fraction of cereals were replaced by 35% extruded linseed and 6% calcium nitrate; linseed fatty acids and nitrate supply in the LN diet were 1.9% and 1.0%, respectively. Methane emission was measured continuously using the GreenFeed system. Methaemoglobin was determined every week in peripheral blood from bulls receiving the LN diet. Nitrate and nitrite concentrations were determined in rumen, liver and tongue sampled at slaughter. Dry matter intake tended to be lower for LN diet (P=0.10). Body weight gain was lower for LN diet (P=0.01; 1.60 and 1.26 kg/day for C and LN diet, respectively). Daily methane emission was 9% lower (P<0.001) for LN than C diet (249 and 271 g/day, respectively) but methane yield did not differ between diets (24.1 and 23.2 g/kg DM intake for C and LN diet, respectively, P=0.34). Methaemoglobin was under the limit of detection (<2% of total haemoglobin) for most animals and was always lower than 5.6%, suggesting an absence of risk to animal health. Nitrite and nitrate concentrations in offal did not differ between C and LN diets. In conclusion, a moderate supply of linseed and nitrate in bull feed failed to decrease enteric methane yield and impaired bull liveweight gain but without adverse effects for animal health and food safety.


Asunto(s)
Compuestos de Calcio/farmacología , Bovinos/fisiología , Suplementos Dietéticos , Ácidos Grasos/farmacología , Lino/química , Metano/metabolismo , Nitratos/farmacología , Alimentación Animal/análisis , Animales , Brassica rapa , Dieta/veterinaria , Grano Comestible , Masculino , Rumen/metabolismo , Ensilaje/análisis , Triticum , Zea mays
4.
J Dairy Sci ; 100(3): 1845-1855, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28109588

RESUMEN

The effect of tea saponin supplementation in the ruminant diet on methane emissions, rumen fermentation, and digestive processes is still under debate. The objective of this study was to assess the effect of this plant extract on methanogenesis, total-tract digestibility, and lactating performances of dairy cows. The work included 2 independent and successive experiments. First, the effect of 7 tea saponin doses (from 0 to 0.50 g/L) on methane emissions and protozoa concentrations was tested in 2 repeated in vitro batch culture incubations using bovine rumen contents as inoculum and a cereal mixture as substrate. After 18 h of incubation, total gas production and composition as well as rumen fermentation parameters and protozoa concentration were analyzed. Increasing dosage of the plant extract reduced methane production and protozoa concentration, with a maximum reduction of 29% for CH4 (mL/g of substrate) and 51% for protozoa (105/mL). Tea saponin did not affect volatile fatty acids concentration, but marginally decreased total gas production by 5% at the highest dose. Second, a 2-period crossover design experiment was carried out with 8 lactating dairy cows fed a basal diet (54% corn silage, 6% hay, and 40% pelleted concentrates on a dry matter basis) without (control) or with 0.52% tea saponin (TSP). Each experimental period lasted 5 wk. Animals were fed ad libitum during the first 3 wk of the period (wk 1, 2, and 3) and restricted (95% of ad libitum intake) during the last 2 wk (wk 4 and 5). Intake and milk production were recorded daily. Methane emissions were quantified using open chambers (2 d, wk 4). Total-tract digestibility and nitrogen balance were determined from total feces and urine collected separately (5 d, wk 5). Rumen fermentation parameters and protozoa concentration were analyzed from samples taken after morning feeding (1 d, wk 5). Milk production, dry matter intake, and feed efficiency were reduced with TSP (-18, -12, and -8%, respectively). As daily methane production (g/d) was not affected, methane emissions (g/kg of dry matter intake) increased by 14% with TSP. Total-tract digestibility and nitrogen balance were similar between diets, except for acid detergent fiber digestibility, which tended to be improved with TSP (+4 percentage units). Rumen fermentation parameters and protozoa concentration were relatively unchanged by diets. Under the conditions of this experiment, tea saponin is not efficient to reduce methane emissions from dairy cows.


Asunto(s)
Lactancia/efectos de los fármacos , Metano/biosíntesis , Animales , Bovinos , Dieta/veterinaria , Digestión/efectos de los fármacos , Femenino , Fermentación , Leche/química , Rumen/metabolismo , Saponinas ,
5.
J Dairy Sci ; 99(5): 3445-3456, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26947299

RESUMEN

We investigated the effects of increasing extruded linseed supply in diets based on hay (H; experiment 1) or corn silage (CS; experiment 2) on enteric methane (CH4) emission, rumen microbial and fermentation parameters, and rumen and total-tract digestibility. In each experiment, 4 lactating Holstein cows fitted with cannulas at the rumen and proximal duodenum were used in a 4×4 Latin square design (28-d periods). Cows were fed ad libitum a diet [50:50 and 60:40 forage:concentrate on a dry matter (DM) basis for experiments 1 and 2, respectively] without supplementation (H0, CS0) or supplemented with extruded linseed at 5% (H5, CS5), 10% (H10, CS10), and 15% (H15, CS15) of dietary DM (i.e., 1.8, 3.6 and 5.4% total fatty acids added, respectively). All measurements were carried out during the last 8 d of each period. Linseed supply linearly decreased daily CH4 emission in cows fed H diets (from 486 to 289g/d for H0 to H15, on average) and CS diets (from 354 to 207g/d for CS0 to CS15, on average). The average decrease in CH4 per kilogram of DM intake was, respectively, -7, -15, and -38% for H5, H10, H15 compared with the H0 diet, and -4, -8, and -34% for CS5, CS10, and CS15 compared with the CS0 diet. The same dose-response effect was observed on CH4 emission in percent of gross energy intake, per kilogram of nutrient digested, and per kilogram of 4% fat- and 3.3% protein-corrected milk (FPCM) in both experiments. Changes in the composition of rumen volatile fatty acids in response to increasing linseed supply resulted in a moderate or marked linear decrease in acetate:propionate ratio for H or CS diets, respectively. The depressive effect of linseed on total protozoa concentration was linear for H diets (-15 to -40%, on average, for H5 to H15 compared with H0) and quadratic for CS diets (-17 to -83%, on average, for CS5 to CS15 compared with CS0). Concentration of methanogens was similar among H or CS diets. The energetic benefits from the decreased CH4 emission with linseed supply in diets based on hay or corn silage did not improve digestibility or milk yield. Milk efficiency (kg of FPCM/kg of DM intake) was improved with linseed supply up to H10 in H diets and was unchanged in CS diets. Lower CH4 enteric emission from dairy cows fed linseed helps limit the environmental footprint of ruminant livestock.


Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Lino/química , Metano/metabolismo , Rumen/metabolismo , Ensilaje/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Bovinos/microbiología , Suplementos Dietéticos/análisis , Digestión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Fermentación/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Rumen/efectos de los fármacos , Rumen/microbiología , Zea mays/química
6.
J Anim Sci ; 93(11): 5367-77, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26641056

RESUMEN

Tea saponin is considered a promising natural compound for reducing enteric methane emissions in ruminants. A trial was conducted to study the effect of this plant extract fed alone or in combination with nitrate on methane emissions, total tract digestive processes, and ruminal characteristics in cattle. The experiment was conducted as a 2 × 2 factorial design with 4 ruminally cannulated nonlactating dairy cows. Feed offer was restricted to 90% of voluntary intake and diets consisted of (DM basis): 1) control (CON; 50% hay and 50% pelleted concentrates), 2) CON with 0.5% tea saponin (TEA), 3) CON with 2.3% nitrate (NIT), and 4) CON with 0.5% tea saponin and 2.3% nitrate (TEA+NIT). Tea saponin and nitrate were included in pelleted concentrates. Diets contained similar amounts of CP (12.2%), starch (26.0%), and NDF (40.1%). Experimental periods lasted 5 wk including 2 wk of measurement (wk 4 and 5), during which intake was measured daily. In wk 4, daily methane emissions were quantified for 4 d using open circuit respiratory chambers. In wk 5, total tract digestibility, N balance, and urinary excretion of purine derivatives were determined from total feces and urine collected separately for 6 d. Ruminal fermentation products and protozoa concentration were analyzed from samples taken after morning feeding for 2 nonconsecutive days in wk 5. Tea saponin and nitrate supplementation decreased feed intake ( < 0.05), with an additive effect when fed in combination. Compared with CON, tea saponin did not modify methane emissions (g/kg DMI; > 0.05), whereas nitrate-containing diets (NIT and TEA+NIT) decreased methanogenesis by 28%, on average ( < 0.001). Total tract digestibility, N balance, and urinary excretion of purine derivatives were similar among diets. Ruminal fermentation products were not affected by tea saponin, whereas nitrate-containing diets increased acetate proportion and decreased butyrate proportion and ammonia concentration ( < 0.05). Under the experimental conditions tested, we confirmed the antimethanogenic effect of nitrate, whereas tea saponin alone included in pelleted concentrates failed to decrease enteric methane emissions in nonlactating dairy cows.


Asunto(s)
Camellia sinensis/química , Bovinos , Metano/metabolismo , Rumen/metabolismo , Saponinas/farmacología , Amoníaco/metabolismo , Animales , Dieta/veterinaria , Suplementos Dietéticos , Digestión/efectos de los fármacos , Heces , Femenino , Fermentación , Aditivos Alimentarios , Nitratos/farmacología , Rumen/efectos de los fármacos , Saponinas/química , Almidón/metabolismo
7.
J Anim Sci ; 93(7): 3564-77, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26440025

RESUMEN

The objective of this study was to test the effect of linseed oil and nitrate fed alone or in combination on methane (CH4) emissions and diet digestibility in cows. The experiment was conducted as a 2 × 2 factorial design using 4 multiparous nonlactating Holstein cows (initial BW 656 ± 31 kg). Each experimental period lasted 5 wk, with measures performed in the final 3 wk (wk 3 to 5). Diets given on a DM basis were 1) control (CON; 50% natural grassland hay and 50% concentrate), 2) CON with 4% linseed oil (LIN), 3) CON with 3% calcium nitrate (NIT), and 4) CON with 4% linseed oil plus 3% calcium nitrate (LIN+NIT). Diets were offered twice daily and were formulated to deliver similar amounts (DM basis) of CP (12.2%), starch (25.5%), and NDF (39.5%). Feed offer was restricted to 90% of voluntary intake (12.4 kg DMI/d). Total tract digestibility and N balance were determined from total feces and urine collected separately for 6 d during wk 4. Daily CH4 emissions were quantified using open chambers for 4 d during wk 5. Rumen fermentation and microbial parameters were analyzed from samples taken before and 3 h after the morning feeding. Rumen concentrations of dissolved hydrogen (H2) were measured continuously up to 6 h after feeding using a H2 sensor. Compared with the CON diet linseed oil and nitrate decreased (P < 0.01) CH4 emissions (g/kg DMI) by 17 and 22%, respectively, when fed alone and by 32% when combined. The LIN diet reduced CH4 production throughout the day, increased (P = 0.02) propionate proportion, and decreased (P = 0.03) ruminal protozoa concentration compared with CON diet. The NIT diet strongly reduced CH4 production 3 h after feeding, with a simultaneous increase in rumen dissolved H2 concentration, suggesting that nitrate does not act only as an electron acceptor. As a combined effect, linseed plus nitrate also increased H2 concentrations in the rumen. Diets had no effect (P > 0.05) on total tract digestibility of nutrients, except linseed oil, which tended to reduce (P < 0.10) fiber digestibility. Nitrogen balance (% of N intake) was positive for all diets but retention was less (P = 0.03) with linseed oil. This study demonstrates an additive effect between nitrate and linseed oil for reducing methanogenesis in cows without altering diet digestibility.


Asunto(s)
Alimentación Animal/análisis , Compuestos de Calcio/farmacología , Bovinos/fisiología , Aceite de Linaza/farmacología , Metano/metabolismo , Nitratos/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Compuestos de Calcio/administración & dosificación , Dieta/veterinaria , Digestión/efectos de los fármacos , Digestión/fisiología , Quimioterapia Combinada , Femenino , Fermentación , Aceite de Linaza/administración & dosificación , Nitratos/administración & dosificación , Rumen/efectos de los fármacos , Rumen/metabolismo
8.
J Dairy Sci ; 98(7): 4829-40, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25958291

RESUMEN

Milk odd- and branched-chain fatty acids (OBCFA) have been suggested as potential biomarkers for rumen function. The potential of milk OBCFA as a biomarker depends on whether their profile reflects the profile observed in the duodenum. The objective of this study was to evaluate whether the OBCFA profile in duodenum samples is reflected in plasma and milk. For this, 2 dairy cattle experiments were used. In experiment 1, 4 Holstein cows fitted with rumen and proximal duodenum cannulas were used in a 4×4 Latin square design. The treatments consisted of 2 nitrogen levels (143 vs. 110g of crude protein/kg of dry matter for high and low N, respectively) combined with either 1 of the 2 energy sources (i.e., starch from barley, corn, and wheat or fiber from soybean hulls and dehydrated beet pulp). In experiment 2, 4 Holstein cows fitted with rumen and proximal duodenum cannulas were used in a 3×3 Latin square design, with the treatments consisting of 3 diets: (1) RNB-, a diet with a crude protein content of 122g/kg of dry matter, predicted to provide protein digested in the small intestine according to the requirement of the animals, but with a shortage of rumen degradable protein; (2) RNB- to which 6g/d of niacin was added through inclusion in the mineral and vitamin premix, and (3) RNB- to which urea was added to balance rumen degradable N supply resulting in a CP content of 156g/kg of dry matter. In both experiments, samples of duodenal digesta, plasma, and milk were collected and analyzed for fatty acids. Additionally, lipids in plasma samples were separated in lipid classes and analyzed for fatty acids. The OBCFA profile in milk was enriched in 15:0, iso-17:0, anteiso-17:0, and cis-9-17:1 as compared with duodenal samples, and milk secretions even exceeded duodenal flows, which suggests occurrence of postruminal synthesis, such as de novo synthesis, desaturation, and elongation. The postruminal modification of the OBCFA profile might hamper the application of OBCFA as diagnostic tools of rumen function.


Asunto(s)
Bovinos/metabolismo , Duodeno/metabolismo , Ácidos Grasos/metabolismo , Leche/química , Nitrógeno/metabolismo , Rumen/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Duodeno/efectos de los fármacos , Ácidos Grasos/sangre , Femenino , Leche/efectos de los fármacos , Nitrógeno/administración & dosificación , Rumen/efectos de los fármacos
9.
J Dairy Sci ; 96(10): 6577-95, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23972492

RESUMEN

The effect of supplementation of increasing amounts of extruded linseed in diets based on hay (H; experiment 1) or corn silage (CS; experiment 2) was investigated in regard to dairy performance and the milk fatty acid (FA) composition. In each experiment, 4 lactating multiparous Holstein cows were used in a 4 × 4 Latin square design (28-d periods). The cows were fed a diet (50:50 and 40:60 concentrate:forage ratio for experiments 1 and 2, respectively; dry matter basis) without supplementation (H0 or CS0) or supplemented with 5% (H5 or CS5), 10% (H10 or CS10), or 15% (H15 or CS15) of extruded linseed. Regardless of the forage type, diet supplementation with increasing amounts of extruded linseed had no effect on the dry matter intake, milk yield, or protein content or yield. In contrast, the milk fat content decreased progressively from H0 to H10 diets, and then decreased strongly with the H15 diet in response to increasing amounts of extruded linseed. For CS diets, the milk fat content initially decreased from CS0 to CS10, but then increased with the CS15 diet. For the H diets, the milk saturated FA decreased (-24.1g/100g of FA) linearly with increasing amounts of extruded linseed, whereas the milk monounsaturated FA (+19.0 g/100 g), polyunsaturated FA (+4.9 g/100 g), and total trans FA (+14.7 g/100 g) increased linearly. For the CS diets, the extent of the changes in the milk FA composition was generally lower than for the H diets. Milk 12:0 to 16:0 decreased in a similar manner in the 2 experiments with increasing amounts of extruded linseed intake, whereas 18:0 and cis-9 18:1 increased. The response of total trans 18:1 was slightly higher for the CS than H diets. The milk trans-10 18:1 content increased more with the CS than the H diets. The milk cis-9,trans-11 conjugated linoleic acid response to increasing amounts of extruded linseed intake was linear and curvilinear for the H diets, whereas it was only linear for the CS diets. The milk 18:3n-3 percentage increased in a similar logarithmic manner in the 2 experiments. It was concluded that the milk FA composition can be altered by extruded linseed supplementation with increasing concentrations of potentially health-beneficial FA (i.e., oleic acid, 18:3n-3, cis-9,trans-11 conjugated linoleic acid, and odd- and branched-chain FA) and decreasing concentrations of saturated FA. Extruded linseed supplementation increased the milk trans FA percentage.


Asunto(s)
Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos/administración & dosificación , Lino , Ácidos Linoleicos Conjugados/administración & dosificación , Leche/química , Ensilaje , Zea mays , Animales , Bovinos , Femenino , Lactancia/fisiología , Ácidos Linoleicos Conjugados/análisis
10.
Animal ; 7(5): 860-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23190866

RESUMEN

This study evaluated effects of farming practice scenarios aiming to reduce greenhouse gas (GHG) emissions and subsequent alternative land use on environmental impacts of a beef cattle production system using the life cycle assessment approach. The baseline scenario includes a standard cow-calf herd with finishing heifers based on grazing, and a standard bull-fattening herd using a diet mainly based on maize silage, corresponding to current farm characteristics and management by beef farmers in France. Alternative scenarios were developed with changes in farming practices. Some scenarios modified grassland management (S1: decreasing mineral N fertiliser on permanent grassland; S2: decreasing grass losses during grazing) or herd management (S3: underfeeding of heifers in winter; S4: fattening female calves instead of being reared at a moderate growth rate; S5: increasing longevity of cows from 7 to 9 years; S6: advancing first calving age from 3 to 2 years). Other scenarios replaced protein sources (S7: partially replacing a protein supplement by lucerne hay for the cow-calf herd; S8: replacing soya bean meal with rapeseed meal for the fattening herd) or increased n-3 fatty acid content using extruded linseed (S9). The combination of compatible scenarios S1, S2, S5, S6 and S8 was also studied (S10). The impacts, such as climate change (CC, not including CO2 emissions/sequestration of land use and land-use change, LULUC), CC/LULUC (including CO2 emissions of LULUC), cumulative energy demand, eutrophication (EP), acidification and land occupation (LO) were expressed per kg of carcass mass and per ha of land occupied. Compared with the baseline, the most promising practice to reduce impacts per kg carcass mass was S10 (all reduced by 13% to 28%), followed by S6 (by 8% to 10%). For other scenarios, impact reduction did not exceed 5%, except for EP (up to 11%) and LO (up to 10%). Effects of changes in farming practices (the scenarios) on environmental impacts varied according to impact category and functional unit. For some scenarios (S2, S4, S6 and S10), permanent grassland area and LO per kg of carcass decreased by 12% to 23% and 9% to 19%, respectively. If the 'excess' permanent grassland was converted to fast-growing conifer forest to sequester carbon in tree and soil biomass, CC/LULUC per kg of carcass could be reduced by 20%, 25%, 27% and 48% for scenarios S2, S4, S6 and S10, respectively. These results illustrate the potential of farming practices and forest as an alternative land use to contribute to short- and mid-term GHG mitigation of beef cattle production systems.


Asunto(s)
Crianza de Animales Domésticos/métodos , Bovinos , Ambiente , Efecto Invernadero , Actividades Humanas , Alimentación Animal , Bienestar del Animal , Animales , Gases , Modelos Teóricos , Factores de Tiempo , Árboles
11.
Animal ; 4(3): 351-65, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22443940

RESUMEN

Decreasing enteric methane (CH4) emissions from ruminants without altering animal production is desirable both as a strategy to reduce global greenhouse gas (GHG) emissions and as a means of improving feed conversion efficiency. The aim of this paper is to provide an update on a selection of proved and potential strategies to mitigate enteric CH4 production by ruminants. Various biotechnologies are currently being explored with mixed results. Approaches to control methanogens through vaccination or the use of bacteriocins highlight the difficulty to modulate the rumen microbial ecosystem durably. The use of probiotics, i.e. acetogens and live yeasts, remains a potentially interesting approach, but results have been either unsatisfactory, not conclusive, or have yet to be confirmed in vivo. Elimination of the rumen protozoa to mitigate methanogenesis is promising, but this option should be carefully evaluated in terms of livestock performances. In addition, on-farm defaunation techniques are not available up to now. Several feed additives such as ionophores, organic acids and plant extracts have also been assayed. The potential use of plant extracts to reduce CH4 is receiving a renewed interest as they are seen as a natural alternative to chemical additives and are well perceived by consumers. The response to tannin- and saponin-containing plant extracts is highly variable and more research is needed to assess the effectiveness and eventual presence of undesirable residues in animal products. Nutritional strategies to mitigate CH4 emissions from ruminants are, without doubt, the most developed and ready to be applied in the field. Approaches presented in this paper involve interventions on the nature and amount of energy-based concentrates and forages, which constitute the main component of diets as well as the use of lipid supplements. The possible selection of animals based on low CH4 production and more likely on their high efficiency of digestive processes is also addressed. Whatever the approach proposed, however, before practical solutions are applied in the field, the sustainability of CH4 suppressing strategies is an important issue that has to be considered. The evaluation of different strategies, in terms of total GHG emissions for a given production system, is discussed.

12.
J Dairy Sci ; 92(10): 5199-211, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19762838

RESUMEN

This experiment studied the effect of 3 different physical forms of linseed fatty acids (FA) on cow dairy performance, milk FA secretion and composition, and their relationship with methane output. Eight multiparous, lactating Holstein cows were assigned to 1 of 4 dietary treatments in a replicated 4 x 4 Latin square design: a control diet (C) based on corn silage (59%) and concentrate (35%), and the same diet supplemented with whole crude linseed (CLS), extruded linseed (ELS), or linseed oil (LSO) at the same FA level (5% of dietary dry matter). Each experimental period lasted 4 wk. Dry matter intake was not modified with CLS but was lowered with both ELS and LSO (-3.1 and -5.1 kg/d, respectively) compared with C. Milk yield and milk fat content were similar for LSO and ELS but lower than for C and CLS (19.9 vs. 22.3 kg/d and 33.8 vs. 43.2 g/kg, on average, respectively). Compared with diet C, CLS changed the concentrations of a small number of FA; the main effects were decreases in 8:0 to 16:0 and increases in 18:0 and cis-9 18:1. Compared with diet C (and CLS in most cases), LSO appreciably changed the concentrations of almost all the FA measured; the main effects were decreases in FA from 4:0 to 16:0 and increases in 18:0, trans-11 16:1, all cis and trans 18:1 (except trans-11 18:1), and nonconjugated trans 18:2 isomers. The effect of ELS was either intermediate between those of CLS and LSO or similar to LSO with a few significant exceptions: increases in 17:0 iso; 18:3n-3; trans-11 18:1; cis-9, trans-11 conjugated linoleic acid; and trans-11, trans-13 conjugated linoleic acid and a smaller increase in cis-9 18:1. The most positive correlations (r = 0.87 to 0.91) between milk FA concentrations and methane output were observed for saturated FA from 6:0 to 16:0 and for 10:1, and the most negative correlations (r = -0.86 to -0.90) were observed for trans-16+cis-14 18:1; cis-9, trans-13 18:2; trans-11 16:1; and trans-12 18:1. Thus, milk FA profile can be considered a potential indicator of in vivo methane output in ruminants.


Asunto(s)
Bovinos/metabolismo , Ácidos Grasos/análisis , Lino , Aceite de Linaza/administración & dosificación , Metano/metabolismo , Leche/química , Alimentación Animal , Animales , Dieta , Ingestión de Alimentos , Femenino , Manipulación de Alimentos/métodos , Lactancia , Semillas
13.
J Dairy Sci ; 91(7): 2771-85, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18565935

RESUMEN

This study is a meta-analysis of the response of milk long-chain fatty acid (FA) yield and composition to lipid supply, based on published experiments reporting duodenal FA flows or duodenal lipid infusions and milk FA composition (i.e., 39 experiments reporting 139 experimental treatments). Analysis of these data underlined the interdependence between milk yields of C18 and short- and medium-chain (C4 to C16) FA. Lipid supplementation (producing an increase in duodenal C18 flow) decreased linearly milk C4 to C16 yield (-0.26 g of C4 to C16 produced per gram of duodenal C18 flow increase) and increased quadratically milk C18 yield. When these 2 effects increased the percentage of C18 in milk FA up to a threshold value (around 52% of total FA), then milk C18 yield was limited by C4 to C16 yield, decreasing the C18 transfer efficiency from duodenum to milk with high-lipid diets. Moreover, for a given duodenal C18 flow, a decrease in milk C4 to C16 yield induced a decrease in milk C18 yield. Despite high variations in C18 transfer efficiency between duodenum and milk, for a given experimental condition, the percentages of C18 FA in milk total C18 could be predicted from their percentages in duodenal C18, and the percentages at the duodenum and in milk were very similar when mammary desaturation was taken into account (i.e., considering the sums of substrates and products of mammary desaturase). The estimated amounts of 18:0, trans-11-, and trans-13-18:1 desaturated by the mammary gland were a linear function of their mammary uptake, and mammary desaturation was responsible for 80, 95, and 81%, respectively, of the yield of their products (i.e., cis-9-18:1; cis-9, trans-11-, and cis-9, trans-13-18:2). Thus, mammary FA desaturation capacity did not seem to be a limiting factor in the experimental conditions published so far.


Asunto(s)
Bovinos/metabolismo , Duodeno/metabolismo , Ácidos Grasos/análisis , Metabolismo de los Lípidos/fisiología , Leche/química , Animales , Ácidos Grasos/química , Femenino , Humanos , Lactancia , Leche/normas , Salud Pública
14.
J Anim Sci ; 86(10): 2642-50, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18469051

RESUMEN

This experiment studied the effect of 3 forms of presentation of linseed fatty acids (FA) on methane output using the sulfur hexafluoride tracer technique, total tract digestibility, and performance of dairy cows. Eight multiparous lactating Holstein cows (initial milk yield 23.4 +/- 2.2 kg/d) were assigned to 4 dietary treatments in a replicated 4 x 4 Latin square design: a control diet (C) consisting of corn silage (59%), grass hay (6%), and concentrate (35%) and the same diet with crude linseed (CLS), extruded linseed (ELS), or linseed oil (LSO) at the same FA level (5.7% of dietary DM). Each experimental period lasted 4 wk. All the forms of linseed FA significantly decreased daily CH(4) emissions (P < 0.001) but to different extents (-12% with CLS, -38% with ELS, -64% with LSO) compared with C. The same ranking among diets was observed for CH(4) output expressed as a percentage of energy intake (P < 0.001) or in grams per kilogram of OM intake (P < 0.001). Methane production per unit of digested NDF was similar for C, CLS, and ELS but was less for LSO (138 vs. 68 g/kg of digested NDF, respectively; P < 0.001). Measured as grams per kilogram of milk or fat-corrected milk yield, methane emission was similar for C and CLS and was less for ELS and LSO (P < 0.001), LSO being less than ELS (P < 0.01). Total tract NDF digestibility was significantly less (P < 0.001) for the 3 supplemented diets than for C (-6.8% on average; P < 0.001). Starch digestibility was similar for all diets (mean 93.5%). Compared with C, DMI was not modified with CLS (P > 0.05) but was decreased with ELS and LSO (-3.1 and -5.1 kg/d, respectively; P < 0.001). Milk yield and milk fat content were similar for LSO and ELS but less than for C and CLS (19.9 vs. 22.3 kg/d and 33.8 vs. 43.2 g/kg, on average, respectively; P < 0.01 and P < 0.001). Linseed FA offer a promising dietary means to depress ruminal methanogenesis. The form of presentation of linseed FA greatly influences methane output from dairy cows. The negative effects of linseed on milk production will need to be overcome if it is to be considered as a methane mitigation agent. Optimal conditions for the utilization of linseed FA in ruminant diets need to be determined before recommending its use for the dairy industry.


Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Lino/metabolismo , Aceite de Linaza/metabolismo , Metano/metabolismo , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Industria Lechera , Digestión/fisiología , Conducta Alimentaria , Femenino , Lino/química , Lactancia , Aceite de Linaza/química , Leche/química
15.
Animal ; 2(5): 677-90, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-22443593

RESUMEN

A database built from 95 experiments with 303 treatments was used to quantify the ruminal biohydrogenation (BH) of fatty acids (FA), efficiency of microbial protein synthesis (EMPS), duodenal flow and intestinal absorption of total FA and of FA with 12 to 18 C units, in response to variations in dietary FA content, source or technological treatment of fat supplement. Flows of FA were expressed relative to dry matter intake (DMI) to compile data from bovine and ovine species. BH tended to increase curvilinearly with FA intake, whereas dietary FA did not affect EMPS. A linear relationship between FA intake and duodenal flow of total FA was obtained, with a coefficient of 0.75 ± 0.06 g duodenal FA/kg DMI for each g FA intake/kg DMI. Between experiments, positive balances of total FA (intake - duodenum) were related to low EMPS. Relationships between duodenal flows of FA with 12 to 18 C units and their respective intakes were linear, with a coefficient that increased with the number of C units. Duodenal flow of bacterial FA was linearly related to FA intake (coefficient 0.33 ± 0.13), whereas contribution of bacterial lipid to duodenal flow decreased as FA intake increased. For each FA with 12 to 16 C units, prediction of FA absorption from its respective duodenal flow was linear. For total FA and FA with 18 C units, apparent absorption levelled off at high duodenal flows. All these relationships were discussed according to current knowledge on microbial metabolism in the rumen and on the intestinal digestibility of FA in the intestine.

16.
Animal ; 2(5): 691-704, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-22443594

RESUMEN

In ruminants, dietary lipids are extensively hydrogenated by rumen micro-organisms, and the extent of this biohydrogenation is a major determinant of long-chain fatty acid profiles of animal products (milk, meat). This paper reports on the duodenal flows of C18 fatty acids and their absorption in the small intestine, using a meta-analysis of a database of 77 experiments (294 treatments). We established equations for the prediction of duodenal flows of various 18-carbon (C18) fatty acids as a function of the intakes of their precursors and other dietary factors (source and/or technological treatment of dietary lipids). We also quantified the influence of several factors modifying rumen metabolism (pH, forage : concentrate ratio, level of intake, fish oil supplementation). We established equations for the apparent absorption of these fatty acids in the small intestine as a function of their duodenal flows. For all C18 unsaturated fatty acids, apparent absorption was a linear function of duodenal flow. For 18:0, apparent absorption levelled off for high duodenal flows. From this database, with fatty acid flows expressed in g/kg dry matter intake, we could not find any significant differences between animal categories (lactating cows, other cattle or sheep) in terms of rumen metabolism or intestinal absorption of C18 fatty acids.

17.
J Dairy Sci ; 88(11): 3986-99, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16230705

RESUMEN

Three Holstein cows were fed a high-concentrate diet (65:35 concentrate to forage) supplemented with either 5% sunflower oil (SO), 5% linseed oil (LO), or 2.5% fish oil (FO) to examine effects on biohydrogenation and fatty acid profiles in rumen, blood plasma, and milk. Diets were fed in a 3 x 3 Latin square with 4-wk periods with grass hay as the forage. Milk yield, dry matter intake, and percentages of milk fat (2.64) and protein (3.22) did not differ. All diets resulted in incomplete hydrogenation of unsaturated fatty acids as indicated by the profiles of 18:1 isomers, conjugated 18:2 isomers, nonconjugated 18:2 isomers, and 18:0 in ruminal fluid. Percentages of 8:0-14:0 and 16:0 in milk fat were greater with FO. Percentage and yield of trans10,cis12-18:2 were small and greater in cows fed SO (0.14%, 0.57 g/d) than FO (0.03%, 0.15 g/d) or LO (0.04%, 0.12 g/d). Percentage and yield of trans10-18:1, however, increased with FO (6.16%) and SO (6.47%) compared with LO (1.65%). Dietary FO doubled percentage of cis11-18:1 in rumen, plasma, and milk fat. Despite a lack of difference in ruminal percentage of trans11-18:1 (10.5%), cows fed FO had greater plasma trans11-18:1 (116 vs. 61.5 microg/mL) but this response did not result in greater trans11-18:1 percentage in milk fat, which averaged 5.41% across diets. Percentage (2.2%) and yield (14.3 g/d) of cis9,trans11-18:2 in milk fat did not differ due to oils. Unique responses to feeding LO included greater than 2-fold increases in percentages of trans13+14-18:1, trans15-18:1, trans16-18:1, cis15-18:1, cis9,trans12-18:2 and trans11,cis15 -18:2 in umen, plasma, and milk, and cis9,trans13-18:2 in plasma and milk. Ruminal 18:0 percentage had the highest positive correlation with milk fat content (r = 0.82) across all diets. When compared with previous data with cows fed high-concentrate diets without oil supplementation, results suggest that greater production of trans10-18:1, cis11-18:1, and trans11,cis15-18:2 coupled with low production of 18:0 in the rumen may be associated with low milk fat content when feeding high-concentrate diets and fish oil. In contrast, SO or LO could lead to low milk fat content by increasing ruminal trans10-18:1 (SO) or trans11,cis15-18:2 and trans9,trans12-18:2 (LO) along with a reduction in mammary synthesis of 8:0-16:0. Simultaneous increases in ruminal trans11-18:1 with fish oil, at a fraction of sunflower oil supplementation, may represent an effective strategy to maintain cis9,trans11-18:2 synthesis in mammary while reducing milk fat output and sparing energy.


Asunto(s)
Bovinos/fisiología , Dieta , Grasas Insaturadas en la Dieta/administración & dosificación , Ácidos Grasos/análisis , Leche/química , Rumen/química , Animales , Ingestión de Alimentos , Grasas/análisis , Ácidos Grasos/sangre , Aceites de Pescado/administración & dosificación , Hidrogenación , Lactancia , Aceite de Linaza/administración & dosificación , Proteínas de la Leche/análisis , Aceites de Plantas/administración & dosificación , Aceite de Girasol
18.
J Dairy Sci ; 88(2): 726-40, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15653539

RESUMEN

Effects on fatty acid profiles and milk fat yield due to dietary concentrate and supplemental 18:3n-3 were evaluated in 4 lactating Holstein cows fed a low- (35:65 concentrate:forage; L) or high- (65:35; H) concentrate diet without (LC, HC) added oil or with linseed oil (LCO, HCO) at 3% of DM. A 4 x 4 Latin square with four 4-wk periods was used. Milk yield and dry matter intake averaged 26.7 and 20.2 kg/d, respectively, across treatments. Plasma acetate and beta-hydroxybutyrate decreased, whereas glucose, nonesterified fatty acids, and leptin increased with high-concentrate diets. Milk fat percentage was lower in cows fed high-concentrate diets (2.31 vs. 3.38), resulting in decreases in yield of 11 (HC) and 42% (HCO). Reduced yields of 8:0-16:0 and cis9-18:1 fatty acids accounted for 69 and 17%, respectively, of the decrease in milk fat yield with HC vs. LC (-90 g/d), and for 26 and 33%, respectively, of the decrease with HCO vs. LCO (-400 g/d). Total trans-18:1 yield increased by 25 (HCO) and 59 (LCO) g/d with oil addition. Trans10-18:1 yield was 5-fold greater with high-concentrate diets. Trans11-18:1 increased by 13 (HCO) and 19 (LCO) g/d with oil addition. Trans13+14-18:1 yield increased by 9 (HCO) and 18 (LCO) g/d with linseed oil. Yield of total conjugated linoleic acids (CLA) in milk averaged 6 g/d with LC or HC compared with 14 g/d with LCO or HCO. Cis9,trans11-CLA yield was not affected by concentrate level but increased by 147% in response to oil. Feeding oil increased yields of trans11,cis13-, trans11,trans13-, and trans,trans-CLA, primarily with LCO. Trans10,cis12-CLA yield (average of 0.08 g/d) was not affected by treatments. Yield of trans11,cis15-18:2 was 1 g/d in cows fed LC or HC and 10 g/d with LCO or HCO. Yields of cis9,trans11-18:2, cis9,trans12-18:2, and cis9,trans13-18:2 were positively correlated (r = 0.74 to 0.94) with yields of trans11-18:1, trans12-18:1, and trans13+14-18:1, respectively. Plasma concentrations of biohydrogenation intermediates with concentrate or linseed oil level followed similar changes as those in milk fat. Milk fat depression was observed when HC induced an increase in trans10-18:1 yield. A correlation of 0.84 across 31 comparisons from 13 published studies, including the present one, was found among the increase in percentage of trans10-18:1 in milk fat and decreased milk fat yield. We observed, however, more drastic milk fat depression when HCO increased yields of total trans-18:1, trans11,cis15-18:2, trans isomers of 18:3, and reduced yields of 18:0 plus cis9-18:1.


Asunto(s)
Bovinos/fisiología , Dieta , Ácidos Grasos/análisis , Aceite de Linaza/administración & dosificación , Lípidos/análisis , Leche/química , Ácido 3-Hidroxibutírico/sangre , Acetatos/sangre , Animales , Glucemia/análisis , Ingestión de Alimentos , Ácidos Grasos/sangre , Ácidos Grasos no Esterificados/sangre , Femenino , Lactancia , Leptina/sangre , Ácido Linoleico/sangre , Ácidos Linoleicos Conjugados/análisis , Ácidos Linoleicos Conjugados/sangre , Ácidos Grasos trans/análisis , Ácidos Grasos trans/sangre , Ácido alfa-Linolénico/administración & dosificación
19.
J Dairy Sci ; 87(8): 2468-71, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15328270

RESUMEN

Trans-18:1 and 18:2 isomer composition in ruminal fluid during the daily feeding cycle was examined in 3 cows fed a high concentrate diet (35:65) with 5% (DM basis) sunflower oil (SO), 5% linseed oil (LO), or 2.5% fish oil (FO) in a 3 x 3 Latin square with 3 4-wk periods. Grass hay and concentrate mixtures were fed at 0900, 1300, and 1700 h daily. Ruminal fluid was collected at 0900, 1100, 1300, 1500, 1700, 2000, and 0000 h. Feeding SO resulted in the greatest mean concentrations (% of total fatty acids) of trans10,cis12-18:2 and cis9,trans11-18:2. In particular, trans10,cis12-18:2 with SO was greater at 1500 (0.29%), 2000 (0.34%), and 0000 h (0.25%) relative to 0900 h (0.07%). Cis9,trans11-18:2 concentration increased from 0.47% at 0900 h to a peak of 2.06% at 1100 h; it remained greater than the percentage determined at 0900 h at 1300 (1.4%) through 0000 h (1.1%). Concentration of trans11,cis15-18:2 was greatest with LO, ranging from 3.3% (0900 h) to a peak of 11.4% at 2000 h. Mean trans10-18:1 concentration ranked by diet was SO > FO > LO. Peak trans10-18:1 with SO was observed at 1700 h (14.9%) compared with 0900 h (5.1%). Trans11-18:1 did not differ with diet or time. Stearic acid decreased over time with all diets reaching minimum concentrations at 1700 to 2000 h relative to 0900 h. Feeding FO, however, decreased mean 18:0 concentration 4-fold compared with LO or SO. The moderate effect on concentration of trans-18:1 coupled with accumulation of 18:2 intermediates and the decrease of 18:0 over time suggest that oils reduced the biohydrogenation of 18:2 isomers to trans-18:1.


Asunto(s)
Bovinos/metabolismo , Ritmo Circadiano , Grasas Insaturadas en la Dieta/administración & dosificación , Ácidos Linoleicos Conjugados/análisis , Rumen/química , Ácidos Grasos trans/análisis , Animales , Líquidos Corporales/química , Femenino , Aceites de Pescado/administración & dosificación , Ácidos Linoleicos Conjugados/biosíntesis , Aceite de Linaza/administración & dosificación , Aceites de Plantas/administración & dosificación , Rumen/metabolismo , Aceite de Girasol , Ácidos Grasos trans/biosíntesis
20.
J Dairy Sci ; 87(8): 2472-85, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15328271

RESUMEN

Duodenal flows of hydrogenation intermediates in response to changes in dietary forage:concentrate ratio (F:C) and linseed oil were evaluated using 4 lactating Holstein cows fed a low (65:35 forage to concentrate) or high (35:65) concentrate diet without (LC, HC) added oil or with linseed oil (LCO, HCO) at 3% of DM. A 4 x 4 Latin square design was implemented for 5 wk. Lower hydrogenation of 18:2n-6 and 18:3n-3 was observed with HC, but it increased with LCO or HCO. Duodenal flow of total conjugated linoleic acids (CLA) increased by 1.40 (LCO) to 3.01 (HCO) g/d with linseed oil. This response was associated with greater flows of cis9,trans11- (+0.21 to +0.55 g/d), trans11,cis13- (+0.33 to +0.36), trans11,trans13- (+1.01 to +1.15 g/d), and trans,trans-CLA (+0.12 to +0.72 g/d). Trans10,cis12-CLA flow averaged 0.08 g/d and was not affected by F:C or oil. trans11,cis15-18:2 flow increased by 8.5 (LCO) to 62 (HCO) g/d in response to linseed oil. Total trans-18:1 flow was 37 g/d in cows fed LC and increased to 81 g/d with HC. Feeding oil increased total trans-18:1 to the greatest extent with HCO. Flow of trans10-18:1 was lower with LC than with HC (1.46 vs. 20 g/d). Linseed oil increased trans11-18:1 flow by 40 (LCO) to 113 g/d (HCO). Feeding LCO and HCO also increased flows of trans6+7+8-, trans13+14-, trans15-, and trans16-18:1. Apparent intestinal digestibility of trans-18:1 isomers was largely unaffected by concentrate level and ranged between 67 and 95%. Linseed oil increased digestibility of nearly all isomers by 3 to 16 percentage units. Digestibility of cis9,trans11-CLA was greater in cows fed HC (55%) compared with cows fed LC (32%) and was not affected by linseed oil. Data suggest that high concentrate diets enhanced ruminal outflow of trans10-18:1. We provide initial in vivo evidence that supplemental 18:3n-3 is hydrogenated to trans11,cis15-18:2, trans11-18:1, trans13+14-18:1, trans15-18:1, trans6+7+8-18:1, and trans16-18:1 primarily.


Asunto(s)
Bovinos/metabolismo , Dieta , Digestión , Ácidos Linoleicos Conjugados/metabolismo , Aceite de Linaza/administración & dosificación , Ácidos Grasos trans/metabolismo , Animales , Duodeno/metabolismo , Ácidos Grasos/administración & dosificación , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Femenino , Hidrogenación , Mucosa Intestinal/metabolismo , Isomerismo , Ácidos Esteáricos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA