Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Metab ; 35(9): 1613-1629.e8, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37572666

RESUMEN

Hypothalamic gliosis associated with high-fat diet (HFD) feeding increases susceptibility to hyperphagia and weight gain. However, the body-weight-independent contribution of microglia to glucose regulation has not been determined. Here, we show that reducing microglial nuclear factor κB (NF-κB) signaling via cell-specific IKKß deletion exacerbates HFD-induced glucose intolerance despite reducing body weight and adiposity. Conversely, two genetic approaches to increase microglial pro-inflammatory signaling (deletion of an NF-κB pathway inhibitor and chemogenetic activation through a modified Gq-coupled muscarinic receptor) improved glucose tolerance independently of diet in both lean and obese rodents. Microglial regulation of glucose homeostasis involves a tumor necrosis factor alpha (TNF-α)-dependent mechanism that increases activation of pro-opiomelanocortin (POMC) and other hypothalamic glucose-sensing neurons, ultimately leading to a marked amplification of first-phase insulin secretion via a parasympathetic pathway. Overall, these data indicate that microglia regulate glucose homeostasis in a body-weight-independent manner, an unexpected mechanism that limits the deterioration of glucose tolerance associated with obesity.


Asunto(s)
Microglía , FN-kappa B , Humanos , Microglía/metabolismo , FN-kappa B/metabolismo , Obesidad/metabolismo , Peso Corporal/fisiología , Glucosa/metabolismo , Hipotálamo/metabolismo , Dieta Alta en Grasa
2.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35742824

RESUMEN

Both hypothalamic microglial inflammation and melanocortin pathway dysfunction contribute to diet-induced obesity (DIO) pathogenesis. Previous studies involving models of altered microglial signaling demonstrate altered DIO susceptibility with corresponding POMC neuron cytological changes, suggesting a link between microglia and the melanocortin system. We addressed this hypothesis using the specific microglial silencing molecule, CX3CL1 (fractalkine), to determine whether reducing hypothalamic microglial activation can restore POMC/melanocortin signaling to protect against DIO. We performed metabolic analyses in high fat diet (HFD)-fed mice with targeted viral overexpression of CX3CL1 in the hypothalamus. Electrophysiologic recording in hypothalamic slices from POMC-MAPT-GFP mice was used to determine the effects of HFD feeding and microglial silencing via minocycline or CX3CL1 on GFP-labeled POMC neurons. Finally, mice with hypothalamic overexpression of CX3CL1 received central treatment with the melanocortin receptor antagonist SHU9119 to determine whether melanocortin signaling is required for the metabolic benefits of CX3CL1. Hypothalamic overexpression of CX3CL1 increased leptin sensitivity and POMC gene expression, while reducing weight gain in animals fed an HFD. In electrophysiological recordings from hypothalamic slice preparations, HFD feeding was associated with reduced POMC neuron excitability and increased amplitude of inhibitory postsynaptic currents. Microglial silencing using minocycline or CX3CL1 treatment reversed these HFD-induced changes in POMC neuron electrophysiologic properties. Correspondingly, blockade of melanocortin receptor signaling in vivo prevented both the acute and chronic reduction in food intake and body weight mediated by CX3CL1. Our results show that suppressing microglial activation during HFD feeding reduces DIO susceptibility via a mechanism involving increased POMC neuron excitability and melanocortin signaling.


Asunto(s)
Dieta Alta en Grasa , Melanocortinas , Animales , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Melanocortinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Minociclina/farmacología , Neuronas/metabolismo , Obesidad/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo
3.
Cell Metab ; 26(1): 185-197.e3, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683286

RESUMEN

Dietary excess triggers accumulation of pro-inflammatory microglia in the mediobasal hypothalamus (MBH), but the components of this microgliosis and its metabolic consequences remain uncertain. Here, we show that microglial inflammatory signaling determines the immunologic response of the MBH to dietary excess and regulates hypothalamic control of energy homeostasis in mice. Either pharmacologically depleting microglia or selectively restraining microglial NF-κB-dependent signaling sharply reduced microgliosis, an effect that includes prevention of MBH entry by bone-marrow-derived myeloid cells, and greatly limited diet-induced hyperphagia and weight gain. Conversely, forcing microglial activation through cell-specific deletion of the negative NF-κB regulator A20 induced spontaneous MBH microgliosis and cellular infiltration, reduced energy expenditure, and increased both food intake and weight gain even in absence of a dietary challenge. Thus, microglial inflammatory activation, stimulated by dietary excess, orchestrates a multicellular hypothalamic response that mediates obesity susceptibility, providing a mechanistic rationale for non-neuronal approaches to treat metabolic diseases.


Asunto(s)
Regulación del Apetito , Metabolismo Energético , Hipotálamo/inmunología , Inflamación/inmunología , Microglía/inmunología , Obesidad/inmunología , Animales , Hiperfagia/inmunología , Hiperfagia/metabolismo , Hiperfagia/fisiopatología , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Inflamación/metabolismo , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Células Mieloides/patología , FN-kappa B/inmunología , FN-kappa B/metabolismo , Obesidad/metabolismo , Obesidad/fisiopatología , Transducción de Señal
4.
Nat Commun ; 8: 14556, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28223698

RESUMEN

Female mice are less susceptible to the negative metabolic consequences of high-fat diet feeding than male mice, for reasons that are incompletely understood. Here we identify sex-specific differences in hypothalamic microglial activation via the CX3CL1-CX3CR1 pathway that mediate the resistance of female mice to diet-induced obesity. Female mice fed a high-fat diet maintain CX3CL1-CX3CR1 levels while male mice show reductions in both ligand and receptor expression. Female Cx3cr1 knockout mice develop 'male-like' hypothalamic microglial accumulation and activation, accompanied by a marked increase in their susceptibility to diet-induced obesity. Conversely, increasing brain CX3CL1 levels in male mice through central pharmacological administration or virally mediated hypothalamic overexpression converts them to a 'female-like' metabolic phenotype with reduced microglial activation and body-weight gain. These data implicate sex differences in microglial activation in the modulation of energy homeostasis and identify CX3CR1 signalling as a potential therapeutic target for the treatment of obesity.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Microglía/metabolismo , Microglía/patología , Obesidad/metabolismo , Obesidad/patología , Caracteres Sexuales , Transducción de Señal , Animales , Receptor 1 de Quimiocinas CX3C/deficiencia , Proteínas de Unión al Calcio/metabolismo , Dieta Alta en Grasa , Susceptibilidad a Enfermedades , Estrógenos/farmacología , Conducta Alimentaria/efectos de los fármacos , Femenino , Hipotálamo/patología , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Fenotipo , Aumento de Peso
5.
Diabetes ; 66(4): 920-934, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28073831

RESUMEN

Effectors of the phosphoinositide 3-kinase (PI3K) signal transduction pathway contribute to the hypothalamic regulation of energy and glucose homeostasis in divergent ways. Here we show that central nervous system (CNS) action of the PI3K signaling intermediate atypical protein kinase C (aPKC) constrains food intake, weight gain, and glucose intolerance in both rats and mice. Pharmacological inhibition of CNS aPKC activity acutely increases food intake and worsens glucose tolerance in chow-fed rodents and causes excess weight gain during high-fat diet (HFD) feeding. Similarly, selective deletion of the aPKC isoform Pkc-λ in proopiomelanocortin (POMC) neurons disrupts leptin action, reduces melanocortin content in the paraventricular nucleus, and markedly increases susceptibility to obesity, glucose intolerance, and insulin resistance specifically in HFD-fed male mice. These data implicate aPKC as a novel regulator of energy and glucose homeostasis downstream of the leptin-PI3K pathway in POMC neurons.


Asunto(s)
Ingestión de Alimentos/genética , Intolerancia a la Glucosa/genética , Glucosa/metabolismo , Isoenzimas/genética , Neuronas/metabolismo , Obesidad/genética , Proteína Quinasa C/genética , Aumento de Peso/genética , Animales , Dieta Alta en Grasa , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Intolerancia a la Glucosa/metabolismo , Hipotálamo/metabolismo , Resistencia a la Insulina , Leptina/metabolismo , Masculino , Melanocortinas/metabolismo , Ratones , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proopiomelanocortina/efectos de los fármacos , Proopiomelanocortina/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas , Transducción de Señal , Aumento de Peso/efectos de los fármacos
6.
Diabetologia ; 60(2): 226-236, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27986987

RESUMEN

Body weight stability requires homeostatic regulation to balance energy intake and energy expenditure. Research on this system and how it is affected by obesity has largely focused on the role of hypothalamic neurons as integrators of information about long-term fuel storage, short-term nutrient availability and metabolic demand. Recent studies have uncovered glial cells as additional contributors to energy balance regulation and obesity pathogenesis. Beginning with early work on leptin signalling in astrocytes, this area of research rapidly emerged after the discovery of hypothalamic inflammation and gliosis in obese rodents and humans. Current studies have revealed the involvement of a wide variety of glial cell types in the modulation of neuronal activity, regulation of hormone and nutrient availability, and participation in the physiological regulation of feeding behaviour. In addition, one glial type, microglia, has recently been implicated in susceptibility to diet-induced obesity. Together, these exciting new findings deepen our understanding of energy homeostasis regulation and raise the possibility of identifying novel mechanisms that contribute to the pathogenesis of obesity.


Asunto(s)
Homeostasis/fisiología , Neuroglía/metabolismo , Obesidad/metabolismo , Animales , Peso Corporal/genética , Peso Corporal/fisiología , Sistema Nervioso Central/metabolismo , Homeostasis/genética , Humanos , Hipotálamo/metabolismo , Obesidad/genética
7.
Nat Med ; 22(7): 800-6, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27213816

RESUMEN

Type 2 diabetes (T2D) is among the most common and costly disorders worldwide. The goal of current medical management for T2D is to transiently ameliorate hyperglycemia through daily dosing of one or more antidiabetic drugs. Hypoglycemia and weight gain are common side effects of therapy, and sustained disease remission is not obtainable with nonsurgical approaches. On the basis of the potent glucose-lowering response elicited by activation of brain fibroblast growth factor (FGF) receptors, we explored the antidiabetic efficacy of centrally administered FGF1, which, unlike other FGF peptides, activates all FGF receptor subtypes. We report that a single intracerebroventricular injection of FGF1 at a dose one-tenth of that needed for antidiabetic efficacy following peripheral injection induces sustained diabetes remission in both mouse and rat models of T2D. This antidiabetic effect is not secondary to weight loss, does not increase the risk of hypoglycemia, and involves a novel and incompletely understood mechanism for increasing glucose clearance from the bloodstream. We conclude that the brain has an inherent potential to induce diabetes remission and that brain FGF receptors are potential pharmacological targets for achieving this goal.


Asunto(s)
Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Factor 1 de Crecimiento de Fibroblastos/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Western Blotting , Composición Corporal , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Radioisótopos de Carbono , Desoxiglucosa , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Proteína Forkhead Box O1/genética , Prueba de Tolerancia a la Glucosa , Corazón/efectos de los fármacos , Proteínas de Choque Térmico/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Hiperglucemia/metabolismo , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Inyecciones Intraventriculares , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Obesos , Chaperonas Moleculares , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Proteínas de Neoplasias/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Zucker , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Insulina/antagonistas & inhibidores , Receptor de Insulina/genética , Inducción de Remisión
8.
Curr Opin Endocrinol Diabetes Obes ; 22(5): 325-30, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26192704

RESUMEN

PURPOSE OF REVIEW: Hypothalamic inflammation and gliosis are recently discovered mechanisms that may contribute to obesity pathogenesis. Current research in this area suggests that investigation of these central nervous system responses may provide opportunities to develop new weight loss treatments. RECENT FINDINGS: In rodents, hypothalamic inflammation and gliosis occur rapidly with high-fat diet consumption prior to significant weight gain. In addition, sensitivity or resistance to diet-induced obesity in rodents generally correlates with the presence or absence of hypothalamic inflammation and reactive gliosis (brain response to injury). Moreover, functional interventions that increase or decrease inflammation in neurons and glia correspondingly alter diet-associated weight gain. However, some conflicting data have recently emerged that question the contribution of hypothalamic inflammation to obesity pathogenesis. Nevertheless, several studies have detected gliosis and disrupted connectivity in obese humans, highlighting the potential translational importance of this mechanism. SUMMARY: There is growing evidence that obesity is associated with brain inflammation in humans, particularly in the hypothalamus where its presence may disrupt body weight control and glucose homeostasis. More work is needed to determine whether this response is common in human obesity and to what extent it can be manipulated for therapeutic benefit.


Asunto(s)
Encefalitis/patología , Gliosis/patología , Hipotálamo/patología , Obesidad/patología , Animales , Dieta Alta en Grasa/efectos adversos , Encefalitis/etiología , Gliosis/etiología , Glucosa/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA