Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 23(1): 412, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968654

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is frequently associated with dyslipidemia, which corresponds to the increase in the triglycerides and fatty acid concentrations in tissues, such as the skeletal muscle. Also, T2DM molecular mechanism involves increasing in reactive oxygen species (ROS) production and oxidative stress. The use of herbal medicines such as Uncaria tomentosa (Ut) has been proposed as an auxiliary treatment for patients with T2DM. In this study, it was evaluated the effect of Ut aqueous extract on cell viability and ROS production, in skeletal myoblasts from C2C12 lineage exposed to the free fatty acid palmitate (PA). METHODS: Cells were incubated with PA in different concentrations ranging from 10 to 1000 µM, for 24 or 48 h, for cytotoxicity assay. Cell death, DNA fragmentation and ROS production assays were performed in cell cultures incubated with PA for 24 h, in the pre (preventive condition) or post treatment (therapeutic condition) with 250 µg/ml Ut aqueous extract, for 2 or 6 h. Cell death was evaluated by MTT method or flow cytometry. ROS generation was measured by fluorescence spectroscopy using the DCFDA probe. RESULTS: Cell viability was reduced to approximately 44% after the incubation with PA for 24 h from the concentration of 500 µM. In the incubation of cells with 500 µM PA and Ut extract for 6 h, in both conditions (preventive or therapeutic), it was observed an increase of 27 and 70% in cell viability respectively, in comparison to the cultures incubated with only PA. Also, the incubation of cultures with 500 µM PA, for 24 h, increased 20-fold the ROS formation, while the treatment with Ut extract, for 6 h, both in the preventive or therapeutic conditions, promoted decrease of 21 and 55%, respectively. CONCLUSION: The Ut extract was efficient in promoting cell protection against PA lipotoxicity and ROS generation, potentially preventing oxidative stress in C2C12 skeletal muscle cells. Since T2DM molecular mechanism involves oxidative stress condition and it is often associated with dyslipidemia and fatty acid accumulation in muscle tissue, these results open perspectives for the use of Ut as an auxiliary strategy for T2DM management.


Asunto(s)
Uña de Gato , Diabetes Mellitus Tipo 2 , Dislipidemias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Palmitatos/toxicidad , Palmitatos/metabolismo , Uña de Gato/química , Uña de Gato/metabolismo , Músculo Esquelético , Agua/química
2.
J Cell Biochem ; 120(8): 13141-13155, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30891818

RESUMEN

Epidermal differentiation is a complex process in which keratinocytes go through morphological and biochemical changes in approximately 15 to 30 days. Abnormal keratinocyte differentiation is involved in the pathophysiology of several skin diseases. In this scenario, mesenchymal stem cells (MSCs) emerge as a promising approach to study skin biology in both normal and pathological conditions. Herein, we have studied the differentiation of MSC from umbilical cord into keratinocytes. MSC were cultured in Dulbecco's modified Eagle's medium (DMEM) (proliferation medium) and, after characterization, differentiation was induced by culturing cells in a defined keratinocyte serum-free medium (KSFM) supplemented with epidermal growth factor (EGF) and calcium chloride ions. Cells cultivated in DMEM were used as control. Cultures were evaluated from day 1 to 23, based on the cell morphology, the expression of p63, involucrin and cytokeratins (KRTs) KRT5, KRT10 and KRT14, by quantitative polymerase chain reaction, Western blot analysis or immunofluorescence, and by the detection of epidermal kallikreins activity. In cells grown in keratinocyte serum-free medium with EGF and 1.8 mM calcium, KRT5 and KRT14 expression was shown at the first day, followed by the expression of p63 at the seventh day. KRT10 expression was detected from day seventh while involucrin was observed after this period. Data showed higher kallikrein (KLK) activity in KSFM-cultured cells from day 11th in comparison to control. These data indicate that MSC differentiated into keratinocytes similarly to that occurs in the human epidermis. KLK activity detection appears to be a good methodology for the monitoring the differentiation of MSC into the keratinocyte lineage, providing useful tools for the better understanding of the skin biology.


Asunto(s)
Epidermis/metabolismo , Calicreínas/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Western Blotting , Cloruro de Calcio/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Factor de Crecimiento Epidérmico/metabolismo , Epidermis/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Humanos , Inmunofenotipificación , Queratina-10/genética , Queratina-10/metabolismo , Queratina-14/genética , Queratina-14/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Microscopía , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA