Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Rev Chem ; 8(3): 179-194, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38337008

RESUMEN

DNA computing and DNA data storage are emerging fields that are unlocking new possibilities in information technology and diagnostics. These approaches use DNA molecules as a computing substrate or a storage medium, offering nanoscale compactness and operation in unconventional media (including aqueous solutions, water-in-oil microemulsions and self-assembled membranized compartments) for applications beyond traditional silicon-based computing systems. To build a functional DNA computer that can process and store molecular information necessitates the continued development of strategies for computing and data storage, as well as bridging the gap between these fields. In this Review, we explore how DNA can be leveraged in the context of DNA computing with a focus on neural networks and compartmentalized DNA circuits. We also discuss emerging approaches to the storage of data in DNA and associated topics such as the writing, reading, retrieval and post-synthesis editing of DNA-encoded data. Finally, we provide insights into how DNA computing can be integrated with DNA data storage and explore the use of DNA for near-memory computing for future information technology and health analysis applications.


Asunto(s)
Computadores Moleculares , ADN , ADN/química , Redes Neurales de la Computación , Almacenamiento y Recuperación de la Información
2.
Cell Signal ; 100: 110463, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36075558

RESUMEN

Treatment of skeletal muscle atrophy and strengthening the muscles remain a challenge in modern medicine. Studies have shown that photobiomodulation can inhibit skeletal muscle atrophy and aid in functional recovery. Near-infrared radiation (NIR) therapy has emerged as a complementary therapy for the treatment of skeletal muscle atrophy, but its underlying mechanism remains unclear. Polypyrrole (PPy) is an organic polymer with strong near-infrared absorption, which can generate heat from absorbed NIR. In this study, MHC immunofluorescence staining was performed on C2C12 myoblasts to investigate the differentiation of C2C12 cells after NIR-triggered PPy exposure. As TNF-α-induced C2C12 myotubes were used as a model of muscular atrophy. Giemsa staining was used to determine the myotube diameter. Western blot analysis was performed to examine the proteins involved in the differentiation and atrophy of muscle cells, as well as in the Akt/P70S6K signaling pathway. PPy triggered by NIR promoted the differentiation of C2C12 cells, inhibited C2C12 myotube atrophy caused by TNF-α, and downregulated the expression levels of Atrogin-1 and MuRF 1 protein. In addition, we determined that Akt/P70S6K signaling pathway activity plays a crucial role in the therapeutic effect of NIR-triggered polypyrrole, which was further confirmed by the administration of the Akt inhibitor GDC0068. The optimal conditions for these effects were a PPy concentration of 0.125 mg/ml and NIR exposure for 80 s. We show that the photothermal effect of PPy triggered by near-infrared light can increase the beneficial effects of NIR, promote the differentiation of C2C12 cells, and improve C2C12 myotube atrophy, laying a foundation for its future clinical use.


Asunto(s)
Polímeros , Factor de Necrosis Tumoral alfa , Humanos , Polímeros/metabolismo , Polímeros/farmacología , Polímeros/uso terapéutico , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Pirroles/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Diferenciación Celular , Músculo Esquelético/metabolismo
3.
Acta Biomater ; 137: 290-304, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637934

RESUMEN

Impressive developments have been achieved with the use of zeolitic imidazolate framework-8 (ZIF-8) as nanocarriers for tumor theranostics in recent decades by incorporating imaging agents and therapeutic drugs within ZIF-8. However, the simultaneous immobilization of hydrophilic and hydrophobic functional molecules into ZIF-8 nanoparticles in water or organic solvents still presents a daunting challenge. Herein, we developed a new synthesis/encapsulation two-in-one (denoted as one-pot) approach to synthesize uniform dextran-modified Cy5.5&ICG@ZIF-8-Dex nanoparticles in DMSO/H2O solvent mixtures, which enabled the simultaneous encapsulation of hydrophilic indocyanine green (ICG) and hydrophobic cyanine-5.5 (Cy5.5) during the same step. It was confirmed that the one-pot approach in this mixed solvents facilitated the loading of ICG and Cy5.5 molecules. Moreover, the encapsulation of Cy5.5 and ICG within ZIF-8 nanoparticles endowed them with fluorescence imaging capability and photothermal conversion capacity, respectively. The in vivo near-infrared (NIR) fluorescent images of A549-bearing mice injected with Cy5.5&ICG@ZIF-8-Dex demonstrated sufficient accumulations of Cy5.5 at tumor sites due to the enhanced permeability and retention effect. Most impressively, the fluorescent intensity of Cy5.5&ICG@ZIF-8-Dex at tumor site was approximately 40-fold higher than that of free Cy5.5. Additionally, the results of in vivo infrared imaging and photothermal therapy of Cy5.5&ICG@ZIF-8-Dex showed enhanced therapeutic efficiency in comparison with free ICG, further confirming its tumor-targeting capability and photothermal capacity. Therefore, this multifunctional system based on ZIF-8 nanocarriers offered a potential nanoplatform for tumor-targeting theranostics, thus broadening the synthesis and applications of ZIF-8 composite nanoparticles for NIR fluorescence imaging and photothermal therapy in the biomedical field. STATEMENT OF SIGNIFICANCE: Simultaneous immobilization of hydrophilic and hydrophobic molecules into ZIF-8 nanoparticles still remains a daunting challenge. Therefore, we have developed a new synthesis/encapsulation two-in-one approach to synthesize uniform Cy5.5&ICG@ZIF-8-Dex composite nanoparticles in DMSO/H2O solvent mixtures, which enabled the simultaneous encapsulation of hydrophilic indocyanine green (ICG) and hydrophobic cyanine-5.5 (Cy5.5) functional molecules during a single step. The results showed that the co-loading of Cy5.5 and ICG within the ZIF-8 nanoparticles endowed them with a remarkable fluorescence imaging capability and photothermal conversion capacity. Based on their enhanced convenience and efficacy to simultaneously encapsulate hydrophilic and hydrophobic molecules, the multifunctional nanocarriers that were prepared in the DMSO/H2O mixed solvents provide a potential nanoplatform toward fluorescence imaging and photothermal therapy for tumor theranostics.


Asunto(s)
Nanopartículas , Zeolitas , Animales , Línea Celular Tumoral , Dextranos , Verde de Indocianina , Ratones , Imagen Óptica , Fototerapia , Terapia Fototérmica
4.
Carbohydr Polym ; 241: 116224, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32507183

RESUMEN

Polypyrroles have shown great potential in photoacoustic imaging and photothermal therapy owing to its excellent photothermal conversion capabilities. However, the synthesis of polypyrrole-based nano-assemblies which have colloidal stability in biological buffers requires a number of steps, including the polymerization of pyrrole monomers, self-assembly of polypyrrole-based copolymers, and even an additional step to increase the biocompatibility of the nano-assemblies. Herein, a "polymerization/assembly" two-in-one synthesis is proposed for the first time to achieve the one-step synthesis of a new family of polypyrrole-based nano-assemblies, dextran-polypyrrole nano-assemblies (Dex-PPy NAs), under ambient conditions and in aqueous media. In addition, the approach employs tetravalent cerium ions as initiators which can initiate the polymerization of pyrrole monomers through the initiation of free radicals from dextran molecular chains. The resultant Dex-PPy NAs have a photothermal conversion efficiency reaching as high as 41 % and an excellent photostability. More importantly, the NAs with controllable nanoscale dimensions display no signs of cytotoxicity in both in vitro and in vivo studies owing to their biocompatible dextran "shell". An in vivo study further confirmed that the Dex-PPy NAs have excellent real-time photoacoustic imaging and photothermal therapy capabilities for malignant tumors. Therefore, this study represents an important step towards the scalable synthesis of polypyrrole-based nano-assemblies with photothermal/photoacoustic dual capabilities and enhanced biocompatibility.


Asunto(s)
Materiales Biocompatibles/administración & dosificación , Dextranos/administración & dosificación , Nanoestructuras/administración & dosificación , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Polímeros/administración & dosificación , Pirroles/administración & dosificación , Animales , Materiales Biocompatibles/farmacocinética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dextranos/farmacocinética , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Ratones Endogámicos BALB C , Técnicas Fotoacústicas , Fototerapia , Polímeros/farmacocinética , Pirroles/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA