Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 115: 154833, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37137203

RESUMEN

BACKGROUND & AIMS: Excessive autophagy induces cell death and is regarded as the treatment of cancer therapy. We have confirmed that the anti-cancer mechanism of curcumol is related to autophagy induction. As the main target protein of curcumol, RNA binding protein nucleolin (NCL) interacted with many tumor promoters accelerating tumor progression. However, the role of NCL in cancer autophagy and in curcumol's anti-tumor effects haven't elucidated. The purpose of the study is to identify the role of NCL in nasopharyngeal carcinoma autophagy and reveal the immanent mechanisms of NCL played in cell autophagy. METHODS & RESULTS: In the current study, we have found that NCL was markedly upregulated in nasopharyngeal carcinoma (NPC) cells. NCL overexpression effectively attenuated the level of autophagy in NPC cells, and NCL silence or curcumol treatment obviously aggravated the autophagy of NPC cells. Moreover, the attenuation of NCL by curcumol lead a significant suppression on PI3K/AKT/mTOR signaling pathway in NPC cells. Mechanistically, NCL was found to be directly interact with AKT and accelerate AKT phosphorylation, which caused the activation of the PI3K/AKT/mTOR pathway. Meanwhile, the RNA Binding Domain (RBD) 2 of NCL interacts with Akt, which was also influenced by curcumol. Notably, the RBDs of NCL delivered AKT expression was related with cell autophagy in the NPC. CONCLUSION: The results demonstrated that NCL regulated cell autophagy was related with interaction of NCL and Akt in NPC cells. The expression of NCL play an important role in autophagy induction and further found that was associated with its effect on NCL RNA-binding domain 2. This study may provide a new perspective on the target protein studies for natural medicines and confirm the effect of curcumol not only regulating the expression of its target protein, but also influencing the function domain of its target protein.


Asunto(s)
Neoplasias Nasofaríngeas , Proteínas Proto-Oncogénicas c-akt , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión al ARN/metabolismo , Autofagia , Motivos de Unión al ARN , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Proliferación Celular , Nucleolina
2.
Mol Immunol ; 145: 80-87, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35305534

RESUMEN

BACKGROUND: For a long time, Siraitia grosvenorii fruit extract (SGFE) and its dominant compounds, mogroside V(MV) were both reported to have therapeutic effects on allergic pneumonia, while previous studies only stay on phenotype and mechanism of the two active ingredients, hardly have any studies compared the two ingredients on the effect of liver metabolic, and revealed the relationship between mechanism and liver metabolism. OBJECTIVE: Here we elucidated and compared the curative mechanisms of SGFE and MV on allergic pneumonia through liver metabolomics. METHODS: We established allergic pneumonia mice using ovalbumin, then treated the mice with SGFE, MV and positive drug of Suhuang Zhike Jiaonang. The effects of the drugs were evaluated by detecting inflammatory cytokines, pathological examination and liver oxidative stress biomarkers. We explored the metabolic features between SGFE and MV through liver metabolomics consequently. RESULTS: At phenotype, we confirmed that MV and SGFE both inhibited the expression of inflammatory cytokines including interleukins-5 (IL-5), IL-13, IL-17 and OVA-induced immunoglobulin E, which can also relieve inflammatory cells infiltration and mesenchymal thickening in lung tissue compared with positive drug. In addition, both of them can alleviate oxidative stress damage in liver, while MV showed a superior effect than SGFE. In metabolomic analysis, the two ingredients were found to ameliorate inflammatory and oxidative reaction mainly in controlling pathways of Riboflavin metabolism and Glutathione metabolism. While SGFE were found to control other metabolic pathways such as Phenylalanine metabolism, Sphingolipid metabolism, Glycerollipid metabolism, Glycine, serine and threonine metabolism and Arginine and proline metabolism. CONCLUSION: From the results we can infer that the minor ingredients except MV in SGFE contribute poor function to the treatment of allergic pneumonia and MV may be the main functional constituent that relieve allergic pneumonia in SGFE. This study will be beneficial to figuring out a systematic theory of Siraitia grosvenorii active ingredients and proposing a guidance for pharmacology development.


Asunto(s)
Frutas , Neumonía , Animales , Citocinas , Hígado , Ratones , Extractos Vegetales/farmacología , Neumonía/inducido químicamente , Triterpenos
3.
Front Pharmacol ; 13: 815235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264954

RESUMEN

Human UDP-glucuronosyltransferase 1A1 (hUGT1A1) is one of the most essential phase II enzymes in humans. Dysfunction or strong inhibition of hUGT1A1 may result in hyperbilirubinaemia and clinically relevant drug/herb-drug interactions (DDIs/HDIs). Recently, a high-throughput fluorescence-based assay was constructed by us to find the compounds/herbal extracts with strong inhibition against intracellular hUGT1A1. Following screening of over one hundred of herbal products, the extract of Ginkgo biloba leaves (GBL) displayed the most potent hUGT1A1 inhibition in HeLa-UGT1A1 cells (Hela cells overexpressed hUGT1A1). Further investigations demonstrated that four biflavones including bilobetin, isoginkgetin, sciadopitysin and ginkgetin, are key constituents responsible for hUGT1A1 inhibition in living cells. These biflavones potently inhibit hUGT1A1 in both human liver microsomes (HLM) and living cells, with the IC50 values ranging from 0.075 to 0.41 µM in living cells. Inhibition kinetic analyses and docking simulations suggested that four tested biflavones potently inhibit hUGT1A1-catalyzed NHPN-O-glucuronidation in HLM via a mixed inhibition manner, showing the K i values ranging from 0.07 to 0.74 µM. Collectively, our findings uncover the key constituents in GBL responsible for hUGT1A1 inhibition and decipher their inhibitory mechanisms against hUGT1A1, which will be very helpful for guiding the rational use of GBL-related herbal products in clinical settings.

4.
Phytomedicine ; 91: 153682, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34483017

RESUMEN

BACKGROUND: Mogroside V, the main ingredient of Siraitia grosvenorii, has been proved to have therapeutic effects on pulmonary diseases. The specific mechanism still remains to be clarified, which hinders the potence of its medicinal value. PURPOSE: Serum and lung metabolomics based on LC-MS analysis were applied to explore the mechanism of mogroside V against lung inflammation. METHOD: In this study, balb/c mice were divided into control, model, mogeoside V and SH groups. We evaluated the protective effects of mogroside V on lung inflammation in asthmatic mice. Suhuang Zhike Jiaonang was used as positive drug. Metabolic profiles of serum and lung samples of mice in control, model and mogroside V groups were analyzed by LC-MS. RESULTS: Administration of mogroside V effectively relieved the expression of biochemical cytokines and lung inflammatory infiltration of asthmatic mice caused by ovalbumin (OVA). And visceral index of mice treated with mogroside V was close to control group. These results indicated that mogroside V ameliorated OVA-induced lung inflammation. LC-MS based metabolomics analysis demonstrated 6 main pathways in asthmatic mice including Vitamin B6 metabolism, Taurine and hypotaurine metabolism, Ascorbate and aldarate metabolism, Histidine metabolism, Pentose and glucuronate interconversions, Citrate cycle (TCA cycle) were regulated after using mogroside V. CONCLUSION: The study firstly elucidates the metabolic pathways regulated by mogroside V on lung inflammation through metabolomics, providing a theoretical basis for more sufficient utilization and compatibility of mogroside V.


Asunto(s)
Metabolómica , Neumonía , Triterpenos/farmacología , Animales , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Pulmón , Ratones , Ratones Endogámicos BALB C , Ovalbúmina , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico
5.
Biochem Pharmacol ; 192: 114742, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34428442

RESUMEN

Metastasis is a major cause of recurrence and death in patients with EBV-positive Nasopharyngeal carcinoma (NPC). Previous reports documented that curcumol has both anti-cancer and anti-viral effects, but there is little literature systematically addressing the mechanism of curcumol in EBV-positive tumors. Previously we found that nucelolin (NCL) is a target protein of curcumol in CNE2 cells, an EBV-negative NPC, and in this experiment, we reported a critical role for NCL in promoting migration and invasion of C666-1 cells, an EBV-positive NPC, and found that the expression of NCL determined the level of curcumol's efficacy. Mechanistically, NCL interacted with Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) to activate VEGFA/VEGFR1/PI3K/AKT signaling pathway, which in turn promoted NPC cell invasion and metastasis. Moreover, further study showed that the differential expression of NCL and curcumol intervention only had a regulatory effect on the nuclear accumulation of VEGFR1, which strengthened the anti-cancer effect of curcumol mediated through NCL. Our findings indicated that curcumol exerted anti EBV-positive NPC invasion and metastasis by downregulating EBNA1 and inhibiting VEGFA/VEGFR1/PI3K/AKT signaling by targeting NCL, which provides a novel pharmacological basis for curcumol's clinical use in treating patients with EBV-positive NPC.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Herpesvirus Humano 4/efectos de los fármacos , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Sesquiterpenos/uso terapéutico , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Medicamentos Herbarios Chinos/farmacología , Antígenos Nucleares del Virus de Epstein-Barr/biosíntesis , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/patología , Invasividad Neoplásica/patología , Sesquiterpenos/farmacología
6.
Chem Biol Interact ; 308: 339-349, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31170387

RESUMEN

Magnolol, the most abundant bioactive constituent of the Chinese herb Magnolia officinalis, has been found with multiple biological activities, including anti-oxidative, anti-inflammatory and enzyme-regulatory activities. In this study, the inhibitory effects and inhibition mechanism of magnolol on human carboxylesterases (hCEs), the key enzymes responsible for the hydrolytic metabolism of a variety of endogenous esters as well as ester-bearing drugs, have been well-investigated. The results demonstrate that magnolol strongly inhibits hCE1-mediated hydrolysis of various substrates, whereas the inhibition of hCE2 by magnolol is substrate-dependent, ranging from strong to moderate. Inhibition of intracellular hCE1 and hCE2 by magnolol was also investigated in living HepG2 cells, and the results showed that magnolol could strongly inhibit intracellular hCE1, while the inhibition of intracellular hCE2 was weak. Inhibition kinetic analyses and docking simulations revealed that magnolol inhibited both hCE1 and hCE2 in a mixed manner, which could be partially attributed to its binding at two distinct ligand-binding sites in each carboxylesterase, including the catalytic cavity and the regulatory domain. In addition, the potential risk of the metabolic interactions of magnolol via hCE1 inhibition was predicted on the basis of a series of available pharmacokinetic data and the inhibition constants. All these findings are very helpful in deciphering the metabolic interactions between magnolol and hCEs, and also very useful for avoiding deleterious interactions via inhibition of hCEs.


Asunto(s)
Compuestos de Bifenilo/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Lignanos/metabolismo , Sitios de Unión , Biocatálisis , Compuestos de Bifenilo/química , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Dominio Catalítico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Células Hep G2 , Humanos , Hidrólisis , Cinética , Lignanos/química , Simulación del Acoplamiento Molecular
7.
Int J Biol Macromol ; 134: 622-630, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31047931

RESUMEN

Thrombin, a multifunctional serine protease responsible for the proteolytic hydrolysis of soluble fibrinogen, plays a pivotal role in the blood coagulation cascade. Currently, thrombin inhibitor therapy has been recognized as an effective therapeutic strategy for the prevention and treatment of thrombotic diseases. In this study, the inhibitory effects of natural constituents in St. John's Wort against human thrombin are carefully investigated by a fluorescence-based biochemical assay. The results clearly demonstrate that most of naphthodianthrones, flavonoids and biflavones exhibit strong to moderate inhibition on human thrombin. Among all tested compounds, hypericin shows the most potent inhibitory capability against thrombin, with the IC50 value of 3.00 µM. Further investigation on inhibition kinetics demonstrates that hypericin is a potent and reversible inhibitor against thrombin-mediated Z-GGRAMC acetate hydrolysis, with the Ki value of 2.58 µM. Inhibition kinetic analyses demonstrate that hypericin inhibits thrombin-mediated Z-GGRAMC acetate hydrolysis in a mixed manner, which agrees well with the results from docking simulations that hypericin can bind on both catalytic cavity and anion binding exosites. All these findings suggest that hypericin is a natural thrombin inhibitor with a unique dianthrone skeleton, which can be used as a good candidate to develop novel thrombin inhibitors with improved properties.


Asunto(s)
Fibrinolíticos/química , Fibrinolíticos/farmacología , Hypericum/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antracenos , Relación Dosis-Respuesta a Droga , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Proteolisis , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA