Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Carbohydr Polym ; 290: 119486, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35550754

RESUMEN

Monoaldehydes, due to natural origin and therapeutic activity, have attracted great attention for their ability to crosslink chitosan hydrogels for biomedical applications. However, most studies have focused on single-component hydrogels. In this work, chitosan-based hydrogels, crosslinked for the first time with 2,3,4-trihydroxybenzaldehyde (THBA), were modified with pectin (PC), bioactive glass (BG), and rosmarinic acid (RA). All of these were not only involved in the crosslinking, but also modulated properties or imparted completely new ones. THBA functioned as a crosslinker, resulting in improved mechanical properties, high swelling capacity and delayed degradation and also imparted high antioxidant activity and antiproliferative effect on cancer cells without cytotoxicity for normal cells. Hydrogels containing PC showed enhanced mechanical strength, while the combination with BG gave improved stability in PBS. All hydrogels modified with BG exhibited the ability to mineralise in SBF. The addition of RA enhanced antioxidant and anticancer activities and promoting the mineralisation process.


Asunto(s)
Quitosano , Antioxidantes/farmacología , Quitosano/farmacología , Vidrio , Hidrogeles/farmacología , Pectinas/farmacología
2.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230810

RESUMEN

Mineralization of hydrogel biomaterials with calcium phosphate (CaP) is considered advantageous for bone regeneration. Mineralization can be both induced by the enzyme alkaline phosphatase (ALP) and promoted by calcium-binding biomolecules, such as plant-derived polyphenols. In this study, ALP-loaded gellan gum (GG) hydrogels were enriched with gallotannins, a subclass of polyphenols. Five preparations were compared, namely three tannic acids of differing molecular weight (MW), pentagalloyl glucose (PGG), and a gallotannin-rich extract from mango kernel (Mangifera indica L.). Certain gallotannin preparations promoted mineralization to a greater degree than others. The various gallotannin preparations bound differently to ALP and influenced the size of aggregates of ALP, which may be related to ability to promote mineralization. Human osteoblast-like Saos-2 cells grew in eluate from mineralized hydrogels. Gallotannin incorporation impeded cell growth on hydrogels and did not impart antibacterial activity. In conclusion, gallotannin incorporation aided mineralization but reduced cytocompatibility.


Asunto(s)
Biomimética/métodos , Hidrogeles/química , Taninos Hidrolizables/metabolismo , Plantas/metabolismo , Polisacáridos/química , Fosfatasa Alcalina/metabolismo , Antibacterianos/farmacología , Materiales Biocompatibles , Regeneración Ósea , Calcificación Fisiológica/efectos de los fármacos , Fosfatos de Calcio , Humanos , Taninos Hidrolizables/farmacología , Mangifera/química , Minerales/química , Osteoblastos/metabolismo , Extractos Vegetales/química , Polifenoles/química , Polisacáridos Bacterianos
3.
Front Chem ; 7: 179, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31019908

RESUMEN

Hybrid materials, or hybrids incorporating both organic and inorganic constituents, are emerging as a very potent and promising class of materials due to the diverse, but complementary nature of the properties inherent of these different classes of materials. The complementarity leads to a perfect synergy of properties of desired material and eventually an end-product. The diversity of resultant properties and materials used in the construction of hybrids, leads to a very broad range of application areas generated by engaging very different research communities. We provide here a general classification of hybrid materials, wherein organics-in-inorganics (inorganic materials modified by organic moieties) are distinguished from inorganics-in-organics (organic materials or matrices modified by inorganic constituents). In the former area, the surface functionalization of colloids is distinguished as a stand-alone sub-area. The latter area-functionalization of organic materials by inorganic additives-is the focus of the current review. Inorganic constituents, often in the form of small particles or structures, are made of minerals, clays, semiconductors, metals, carbons, and ceramics. They are shown to be incorporated into organic matrices, which can be distinguished as two classes: chemical and biological. Chemical organic matrices include coatings, vehicles and capsules assembled into: hydrogels, layer-by-layer assembly, polymer brushes, block co-polymers and other assemblies. Biological organic matrices encompass bio-molecules (lipids, polysaccharides, proteins and enzymes, and nucleic acids) as well as higher level organisms: cells, bacteria, and microorganisms. In addition to providing details of the above classification and analysis of the composition of hybrids, we also highlight some antagonistic yin-&-yang properties of organic and inorganic materials, review applications and provide an outlook to emerging trends.

4.
Carbohydr Polym ; 205: 427-436, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30446125

RESUMEN

The present work focuses on the development of novel injectable, self-gelling composite hydrogels based on two types of low esterified amidated pectins from citrus peels and apple pomace. Sol-gel-derived, calcium-rich bioactive glass (BG) fillers in a particle form are applied as delivery vehicles for the release of Ca2+ ions to induce internal gelation of pectins. Composites were prepared by a relatively simple mixing technique, using 20% w/v BG particles of two different sizes (2.5 and <45 µm). Smaller particles accelerated pectin gelation slightly faster than bigger ones, which appears to result from the higher rate of Ca2+ ion release. µCT showed inhomogeneous distribution of the BG particles within the hydrogels. All composite hydrogels exhibited strong antibacterial activity against methicilin-resistant Staphylococcus aureus. The mineralization process of pectin-BG composite hydrogels occurred upon incubation in simulated body fluid for 28 days. In vitro studies demonstrated cytocompatibility of composite hydrogels with MC3T3-E1 osteoblastic cells.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Vidrio/química , Hidrogeles/farmacología , Pectinas/química , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Calcio/química , Línea Celular , Citrus/química , Hidrogeles/síntesis química , Hidrogeles/química , Malus/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Osteoblastos/efectos de los fármacos , Tamaño de la Partícula
5.
J Dairy Sci ; 101(1): 28-36, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29128214

RESUMEN

Recently, milk-derived proteins have attracted attention for applications in the biomedical field such as tissue regeneration. Whey protein isolate (WPI), especially its main component ß-lactoglobulin, can modulate immunity and acts as an antioxidant, antitumor, antiviral, and antibacterial agent. There are very few reports of the application of WPI in tissue engineering, especially in bone tissue engineering. In this study, we tested the influence of different concentrations of WPI on behavior of human osteoblast-like Saos-2 cells, human adipose tissue-derived stem cells (ASC), and human neonatal dermal fibroblasts (FIB). The positive effect on growth was apparent for Saos-2 cells and FIB but not for ASC. However, the expression of markers characteristic for early osteogenic cell differentiation [type-I collagen (COL1) and alkaline phosphatase (ALP)] as well as ALP activity, increased dose-dependently in ASC. Importantly, Saos-2 cells were able to deposit calcium in the presence of WPI, even in a proliferation medium without other supplements that support osteogenic cell differentiation. The results indicate that, depending on the cell type, WPI can act as an enhancer of cell proliferation and osteogenic differentiation. Therefore, enrichment of biomaterials for bone regeneration with WPI seems a promising approach, especially due to the low cost of WPI.


Asunto(s)
Regeneración Ósea , Osteoblastos/citología , Osteogénesis , Células Madre/citología , Proteína de Suero de Leche/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Bovinos , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Humanos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Células Madre/metabolismo , Ingeniería de Tejidos
6.
Cells Tissues Organs ; 206(1-2): 106-118, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30677765

RESUMEN

Polyphenols are known for their antimicrobial activity, whilst both polyphenols and the globular protein ß-lactoglobulin (bLG) are suggested to have antioxidant properties and promote cell proliferation. These are potentially useful properties for a tissue-engineered construct, though it is unknown if they are retained when both compounds are used in combination. In this study, a range of different microbes and an osteoblast-like cell line (human fetal osteoblast, hFOB) were used to assess the combined effect of: (1) green tea extract (GTE), rich in the polyphenol epigallocatechin gallate (EGCG), and (2) whey protein isolate (WPI), rich in bLG. It was shown that approximately 20-48% of the EGCG in GTE reacted with WPI. GTE inhibited the growth of Gram-positive bacteria, an effect which was potentiated by the addition of WPI. GTE alone also significantly inhibited the growth of hFOB cells after 1, 4, and 7 days of culture. Alternatively, WPI significantly promoted hFOB cell growth in the absence of GTE and attenuated the effect of GTE at low concentrations (64 µg/mL) after 4 and 7 days. Low concentrations of WPI (50 µg/mL) also promoted the expression of the early osteogenic marker alkaline phosphatase (ALP) by hFOB cells, whereas GTE inhibited ALP activity. Therefore, the antioxidant effects of GTE can be boosted by WPI, but GTE is not suitable to be used as part of a tissue-engineered construct due to its cytotoxic effects which negate any positive effect WPI has on cell proliferation.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Osteogénesis/efectos de los fármacos , Polifenoles/farmacología , Té/química , Proteína de Suero de Leche/farmacología , Adulto , Antibacterianos/química , Antioxidantes/química , Bacterias/efectos de los fármacos , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Masculino , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Polifenoles/química , Proteína de Suero de Leche/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA