Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
3 Biotech ; 11(3): 135, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33680700

RESUMEN

The vegetative desiccation tolerance of Selaginella brachystachya has been evaluated for its ability to revive from a desiccation (air dry) state and start normal functioning when rehydrated. In this study, S. brachystachya was identified by DNA barcoding. Experiments were conducted using the detached hydrated, desiccated and rehydrated fronds under laboratory conditions to understand the mechanism of revival upon the water availability. Scanning Electron Microscope images during desiccation showed closed stomata and inside curled leaves. Chlorophyll concentration decreased by 1.1 fold in desiccated state and recovered completely upon rehydration. However, the total carotenoid content decreased 4.5 fold while the anthocyanin concentration increased 5.98 fold and the CO2 exchange rate became negative during desiccation. Lipid peroxidation and superoxide radical production were enhanced during desiccation by 68.32 and 73.4%, respectively. Relative electrolyte leakage was found to be minimal during desiccation. Activities of antioxidant enzymes, namely peroxidase (158.33%), glutathione reductase (107.70%), catalase (92.95%) and superoxide dismutase (184.70%) were found to be higher in the desiccated state. The proline concentration increased by 1.4 fold, starch concentration decreased 3.9 fold and sucrose content increased 2.8 fold during desiccation. Upon rehydration, S. brachystachya recovered its original morphology, physiological and biochemical functions. Our results demonstrate that S. brachystachya minimizes desiccation stress through a range of morphological, physiological and biochemical mechanisms. These results provide useful insights into desiccation tolerance mechanisms for potential utilization in enhancing stress tolerance in crop plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02667-1.

2.
J Cell Physiol ; 232(9): 2558-2568, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27736003

RESUMEN

Plant derived arabinogalactan proteins (AGP) were repeatedly confirmed as immunologically as well as dermatologically active compounds. However, little is currently known regarding their potential activity toward skin innate immunity. Here, we extracted and purified AGP from acacia (Acacia senegal) and baobab (Adansonia digitata) seeds to investigate their biological effects on the HaCaT keratinocyte cell line in an in vitro system. While AGP from both sources did not exhibit any cytotoxic effect, AGP from acacia seeds enhanced cell viability. Moreover, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that AGP extracted from both species induced a substantial overexpression of hBD-2, TLR-5, and IL1-α genes. These data suggest that plant AGP, already known to control plant defensive processes, could also modulate skin innate immune responses. J. Cell. Physiol. 232: 2558-2568, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Acacia/química , Adansonia/química , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/farmacología , Queratinocitos/efectos de los fármacos , Mucoproteínas/farmacología , Semillas/química , Piel/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/aislamiento & purificación , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Queratinocitos/inmunología , Queratinocitos/metabolismo , Mucoproteínas/química , Mucoproteínas/aislamiento & purificación , Fitoterapia , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Plantas Medicinales , Conformación Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/inmunología , Piel/metabolismo , Factores de Tiempo , Receptor Toll-Like 6/genética , Receptor Toll-Like 6/metabolismo , Regulación hacia Arriba , beta-Defensinas/genética , beta-Defensinas/metabolismo
3.
Plant Cell Physiol ; 57(10): 2161-2174, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27481894

RESUMEN

In this work, we performed an extensive and detailed analysis of the changes in cell wall composition during Brassica napus anther development. We used immunogold labeling to study the spatial and temporal patterns of the composition and distribution of different arabinogalactan protein (AGP), pectin, xyloglucan and xylan epitopes in high-pressure-frozen/freeze-substituted anthers, quantifying and comparing their relative levels in the different anther tissues and developmental stages. We used the following monoclonal antibodies: JIM13, JIM8, JIM14 and JIM16 for AGPs, LM5, LM6, JIM7, JIM5 and LM7 for pectins, CCRC-M1, CCRC-M89 and LM15 for xyloglucan, and LM11 for xylan. Each cell wall epitope showed a characteristic temporal and spatial labeling pattern. Microspore, pollen and tapetal cells showed similar patterns for each epitope, whereas the outermost anther layers (epidermis, endothecium and middle layers) presented remarkably different patterns. Our results suggested that AGPs, pectins, xyloglucan and xylan have specific roles during anther development. The AGP epitopes studied appeared to belong to AGPs specifically involved in microspore differentiation, and contributed first by the tapetum and then, upon tapetal dismantling, by the endothecium and middle layers. In contrast, the changes in pectin and hemicellulose epitopes suggested a specific role in anther dehiscence, facilitating anther wall weakening and rupture. The distribution of the different cell wall constituents is regulated in a tissue- and stage-specific manner, which seems directly related to the role of each tissue at each stage.


Asunto(s)
Brassica napus/metabolismo , Epítopos/metabolismo , Mucoproteínas/metabolismo , Pectinas/metabolismo , Polen/crecimiento & desarrollo , Polen/ultraestructura , Polisacáridos/metabolismo , Brassica napus/ultraestructura , Inmunohistoquímica , Proteínas de Plantas/metabolismo , Polen/citología , Polen/metabolismo
4.
Ann Bot ; 115(1): 55-66, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25434027

RESUMEN

BACKGROUND AND AIMS: In flowering plants, fertilization relies on the delivery of the sperm cells carried by the pollen tube to the ovule. During the tip growth of the pollen tube, proper assembly of the cell wall polymers is required to maintain the mechanical properties of the cell wall. Xyloglucan (XyG) is a cell wall polymer known for maintaining the wall integrity and thus allowing cell expansion. In most angiosperms, the XyG of somatic cells is fucosylated, except in the Asterid clade (including the Solanaceae), where the fucosyl residues are replaced by arabinose, presumably due to an adaptive and/or selective diversification. However, it has been shown recently that XyG of Nicotiana alata pollen tubes is mostly fucosylated. The objective of the present work was to determine whether such structural differences between somatic and gametophytic cells are a common feature of Nicotiana and Solanum (more precisely tomato) genera. METHODS: XyGs of pollen tubes of domesticated (Solanum lycopersicum var. cerasiforme and var. Saint-Pierre) and wild (S. pimpinellifolium and S. peruvianum) tomatoes and tobacco (Nicotiana tabacum) were analysed by immunolabelling, oligosaccharide mass profiling and GC-MS analyses. KEY RESULTS: Pollen tubes from all the species were labelled with the mAb CCRC-M1, a monoclonal antibody that recognizes epitopes associated with fucosylated XyG motifs. Analyses of the cell wall did not highlight major structural differences between previously studied N. alata and N. tabacum XyG. In contrast, XyG of tomato pollen tubes contained fucosylated and arabinosylated motifs. The highest levels of fucosylated XyG were found in pollen tubes from the wild species. CONCLUSIONS: The results clearly indicate that the male gametophyte (pollen tube) and the sporophyte have structurally different XyG. This suggests that fucosylated XyG may have an important role in the tip growth of pollen tubes, and that they must have a specific set of functional XyG fucosyltransferases, which are yet to be characterized.


Asunto(s)
Glucanos/metabolismo , Nicotiana/metabolismo , Solanum lycopersicum/metabolismo , Solanum/metabolismo , Xilanos/metabolismo , Arabinosa/metabolismo , Fucosiltransferasas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Inmunohistoquímica , Solanum lycopersicum/enzimología , Oligosacáridos/química , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Solanum/enzimología , Nicotiana/enzimología
5.
Plant Physiol ; 167(2): 367-80, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25524442

RESUMEN

Germination of pollen grains is a crucial step in plant reproduction. However, the molecular mechanisms involved remain unclear. We investigated the role of PECTIN METHYLESTERASE48 (PME48), an enzyme implicated in the remodeling of pectins in Arabidopsis (Arabidopsis thaliana) pollen. A combination of functional genomics, gene expression, in vivo and in vitro pollen germination, immunolabeling, and biochemical analyses was used on wild-type and Atpme48 mutant plants. We showed that AtPME48 is specifically expressed in the male gametophyte and is the second most expressed PME in dry and imbibed pollen grains. Pollen grains from homozygous mutant lines displayed a significant delay in imbibition and germination in vitro and in vivo. Moreover, numerous pollen grains showed two tips emerging instead of one in the wild type. Immunolabeling and Fourier transform infrared analyses showed that the degree of methylesterification of the homogalacturonan was higher in pme48-/- pollen grains. In contrast, the PME activity was lower in pme48-/-, partly due to a reduction of PME48 activity revealed by zymogram. Interestingly, the wild-type phenotype was restored in pme48-/- with the optimum germination medium supplemented with 2.5 mm calcium chloride, suggesting that in the wild-type pollen, the weakly methylesterified homogalacturonan is a source of Ca(2+) necessary for pollen germination. Although pollen-specific PMEs are traditionally associated with pollen tube elongation, this study provides strong evidence that PME48 impacts the mechanical properties of the intine wall during maturation of the pollen grain, which, in turn, influences pollen grain germination.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Hidrolasas de Éster Carboxílico/metabolismo , Germinación , Polen/enzimología , Polen/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calcio/farmacología , Hidrolasas de Éster Carboxílico/genética , Medios de Cultivo/farmacología , Esterificación/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Homocigoto , Mutación/genética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Pectinas/metabolismo , Fenotipo , Polen/genética , Tubo Polínico/efectos de los fármacos , Tubo Polínico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Rapid Commun Mass Spectrom ; 28(8): 908-16, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24623695

RESUMEN

RATIONALE: The arabinoxylans are one of the main components of plant cell walls and are known to play major roles in plant tissues properties depending in particular on their structural features. It has been recently shown that one of the strategies developed by resurrection plants to overcome dehydration is based on cell wall composition. For this purpose, the structural characterization of arabinoxylans from desiccation-tolerant grass Eragrostis nindensis (E. nindensis) was compared with its close relative, the desiccation-sensitive Eragrostis tef (E. tef) in order to further understand mechansism of desiccation tolerance in resurrection plants. METHODS: Ion mobility spectrometry coupled to mass spectrometry (IM-MS) in combination with the conventional mass spectrometric approaches, including matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), electrospray ionization multistage tandem mass spectrometry (ESI-MS(n)) and gas chromatography/mass spectrometry (GC/MS), were used to characterize arabinoxylan fragments obtained after endo-xylanase digestion of leave extracts from E. nindensis and E. tef. RESULTS: Whole fingerprinting by MALDI-MS analysis showed the presence of various arabinoxylan fragments within leaves of E. nindensis and E. tef. The monosaccharide composition and some linkage information were determined by GC/MS experiments. Information regarding the branching and sequence details was obtained by ESI-MS(n) experiments after sample permethylation. The presence of structural isomeric ions with different collision cross sections was evidenced by IM-MS which could be differentiated using ESI-MS(n). CONCLUSIONS: We have shown that an orthogonal approach, and especially IM-MS associated to ESI-MS(n) (n = 2 to 4) and GC/MS allowed characterization of arabinoxylan fragments of E. nindensis and E. tef and revealed the presence of isomeric structures. The same arabinoxylan structures were identified for both species but in different relative abundance. Moreover, this work illustrated that IM-MS can efficiently separate isomeric structures and advantageously complements the conventional mass spectrometric methodologies used for arabinoxylan structural characterization.


Asunto(s)
Eragrostis/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Xilanos/análisis , Xilanos/química , Cromatografía de Gases y Espectrometría de Masas , Extractos Vegetales/química , Hojas de la Planta/química
7.
Carbohydr Polym ; 93(2): 651-60, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23499108

RESUMEN

The present study aimed at analyzing the structural features of seed mucilage and cell-wall polysaccharides which accounted for 41% of the mass of flax meal (FM). A combination of high molar-mass mucilage-like polysaccharides (rhamnogalacturonan and arabinoxylan) was released from FM in water, together with arabinogalactan proteins and glucans. About half of FM homogalacturonans was extracted using a calcium chelator and boiling water. Hemicellulosic xyloglucans and xylans were further extracted with 1M KOH, in ∼13% FM-sugars yield. Structural characterization of the xyloglucan using specific enzyme hydrolysis, ion exchange chromatography (HPAEC) and matrix assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectroscopy showed the presence of XXXG type xyloglucan, but also that of XXGG-structure, possibly characteristic of flax seeds. Hydrolysis of xylans with endo-(1→4)-ß-D-xylanase, and analysis of the neutral and acidic oligosaccharides by MALDI-TOF-MS showed that xylan consisted of ß-(1→4)-linked-D-xylopyranose backbone with some zones (DP 5-7) substituted with 4-O-MeGlcA\GlcA\Glc residues.


Asunto(s)
Pared Celular/química , Lino/química , Mucoproteínas/análisis , Mucílago de Planta/análisis , Polisacáridos/análisis , Semillas/química , Quelantes/química , Hidrólisis , Mucoproteínas/química , Pectinas/química , Mucílago de Planta/química , Proteínas de Plantas/análisis , Proteínas de Plantas/química , Polisacáridos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Ácidos Urónicos/química , Agua/química , Xilanos/química
8.
Plant Cell Environ ; 36(5): 1056-70, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23176574

RESUMEN

Date palm (Phoenix dactylifera) is an important crop providing a valuable nutrition source for people in many countries including the Middle East and North Africa. In recent years, the amount of rain in North Africa and especially in the Tunisian palm grove areas has dropped significantly. We investigated the growth and cell wall remodelling of fruits harvested at three key development stages from trees grown with or without water supply. During development, cell wall solubilization and remodelling was characterized by a decrease of the degree of methylesterification of pectin, an important loss of galactose content and a reduction of the branching of xylan by arabinose in irrigated condition. Water deficit had a profound effect on fruit size, pulp content, cell wall composition and remodelling. Loss of galactose content was not as important, arabinose content was significantly higher in the pectin-enriched extracts from non-irrigated condition, and the levels of methylesterification of pectin and O-acetylation of xyloglucan were lower than in irrigated condition. The lower levels of hydrophobic groups (methylester and O-acetyl) and the less intensive degradation of the hydrophilic galactan, arabinan and arabinogalactan in the cell wall may be implicated in maintaining the hydration status of the cells under water deficit.


Asunto(s)
Arecaceae/metabolismo , Pared Celular/metabolismo , Frutas/crecimiento & desarrollo , Agua/metabolismo , Acetilación , Arecaceae/crecimiento & desarrollo , Deshidratación , Esterificación , Frutas/metabolismo , Galactanos/metabolismo , Galactosa/metabolismo , Glucanos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Pectinas/metabolismo , Polisacáridos/metabolismo , Solubilidad , Xilanos/metabolismo
9.
Planta ; 236(1): 115-28, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22270560

RESUMEN

Glycosyltransferase complexes are known to be involved in plant cell wall biosynthesis, as for example in cellulose. It is not known to what extent such complexes are involved in biosynthesis of pectin as well. To address this question, work was initiated on ARAD1 (ARABINAN DEFICIENT 1) and its close homolog ARAD2 of glycosyltransferase family GT47. Using bimolecular fluorescence complementation, Förster resonance energy transfer and non-reducing gel electrophoresis, we show that ARAD1 and ARAD2 are localized in the same Golgi compartment and form homo-and heterodimeric intermolecular dimers when expressed transiently in Nicotiana benthamiana. Biochemical analysis of arad2 cell wall or fractions hereof showed no difference in the monosaccharide composition, when compared with wild type. The double mutant arad1 arad2 had an arad1 cell wall phenotype and overexpression of ARAD2 did not complement the arad1 phenotype, indicating that ARAD1 and ARAD2 are not redundant enzymes. To investigate the cell wall structure of the mutants in detail, immunohistochemical analyses were carried out on arad1, arad2 and arad1 arad2 using the arabinan-specific monoclonal antibody LM13. In roots, the labeling pattern of arad2 was distinct from both that of wild type, arad1 and arad1 arad2. Likewise, in epidermal cell walls of inflorescence stems, LM13 binding differed between arad2 and WILD TYPE, arad1 or arad1 arad2. Altogether, these data show that ARAD2 is associated with arabinan biosynthesis, not redundant with ARAD1, and that the two glycosyltransferases may function in complexes held together by disulfide bridges.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Pared Celular/química , Pectinas/biosíntesis , Pentosiltransferasa/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Polisacáridos/biosíntesis , Secuencia de Aminoácidos , Disulfuros/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Glicosiltransferasas/metabolismo , Mutación , Plantas Modificadas Genéticamente , Alineación de Secuencia , Nicotiana/metabolismo , Transformación Genética
10.
New Phytol ; 192(1): 114-126, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21692803

RESUMEN

• Here, we focused on the biochemical characterization of the Arabidopsis thaliana pectin methylesterase 3 gene (AtPME3; At3g14310) and its role in plant development. • A combination of biochemical, gene expression, Fourier transform-infrared (FT-IR) microspectroscopy and reverse genetics approaches were used. • We showed that AtPME3 is ubiquitously expressed in A. thaliana, particularly in vascular tissues. In cell wall-enriched fractions, only the mature part of the protein was identified, suggesting that it is processed before targeting the cell wall. In all the organs tested, PME activity was reduced in the atpme3-1 mutant compared with the wild type. This was related to the disappearance of an activity band corresponding to a pI of 9.6 revealed by a zymogram. Analysis of the cell wall composition showed that the degree of methylesterification (DM) of galacturonic acids was affected in the atpme3-1 mutant. A change in the number of adventitious roots was found in the mutant, which correlated with the expression of the gene in adventitious root primordia. • Our results enable the characterization of AtPME3 as a major basic PME isoform in A. thaliana and highlight its role in adventitious rooting.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Hidrolasas de Éster Carboxílico/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Hidrolasas de Éster Carboxílico/química , Pared Celular/enzimología , Activación Enzimática , Esterificación , Isoenzimas/química , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Pectinas/metabolismo , Fenotipo , Haz Vascular de Plantas/enzimología , Regiones Promotoras Genéticas/genética , Transporte de Proteínas
11.
Plant Physiol Biochem ; 49(6): 592-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21470867

RESUMEN

The effect of 0.5mM cadmium (Cd) was studied on the ultrastructural aspects and pectin features of the walls of flax cellulosic fibres when the thickening of secondary wall had just started in the hypocotyl of 10-day old seedlings. As seen by PATAg staining in controls, cell-wall formation displayed two distinct steps, secretion and remodelling, which did not occur simultaneously for all the neighbouring fibres. The inner part of the secondary wall, where the cellulose molecules had just been synthesized, appeared very reactive to PATAg. The outer part, where the cellulose fibrils associated in larger microfibril complexes, became non-reactive to PATAg. Under Cd treatment, we noticed some acceleration of fibre differentiation in terms of fibre number, wall thickness and yield. As revealed by PATAg staining, treated fibres exhibited a disturbed cell-wall texture, indicating a modified adhesion between the matrix polysaccharides and the cellulose microfibrils. The Cd impact on the distribution of highly methylesterified homogalacturonans (recognized by JIM7 antibody) was moderate in the cell junctions and low in the primary wall and outer part of secondary wall. The data meant that no early deesterification occurred in these domains, a behaviour related to the specificity of the CW-II metabolism. No large redistribution of low esterified homogalacturonans (recognized by JIM5 antibody) happened either. In parallel, the amount of uronic acid significantly increased in the so-called H(2)SO(4) cell-wall extract, indicating a Cd impact on pectin structure not detected by JIM5 or JIM7 antibodies.


Asunto(s)
Cadmio/farmacología , Pared Celular/efectos de los fármacos , Celulosa/metabolismo , Lino/efectos de los fármacos , Pectinas/metabolismo , Haz Vascular de Plantas/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Esterificación , Lino/metabolismo , Lino/ultraestructura , Hipocótilo/efectos de los fármacos , Hipocótilo/metabolismo , Hipocótilo/ultraestructura , Haz Vascular de Plantas/metabolismo , Haz Vascular de Plantas/ultraestructura , Ácidos Urónicos/metabolismo
12.
J Biol Chem ; 286(10): 8014-8020, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21224383

RESUMEN

L-galactose (L-Gal), a monosaccharide involved in L-ascorbate and rhamnogalacturonan II (RG-II) biosynthesis in plants, is produced in the cytosol by a GDP-D-mannose 3,5-epimerase (GME). It has been recently reported that the partial inactivation of GME induced growth defects affecting both cell division and cell expansion (Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., Faurobert, M., Gouble, B., Page, D., Garcia, V., Petit, J., Stevens, R., Causse, M., Fernie, A. R., Lahaye, M., Rothan, C., and Baldet, P. (2009) Plant J. 60, 499-508). In the present study, we show that the silencing of the two GME genes in tomato leaves resulted in approximately a 60% decrease in terminal L-Gal content in the side chain A of RG-II as well as in a lower capacity of RG-II to perform in muro cross-linking. In addition, we show that unlike supplementation with L-Gal or ascorbate, supplementation of GME-silenced lines with boric acid was able to restore both the wild-type growth phenotype of tomato seedlings and an efficient in muro boron-mediated cross-linking of RG-II. Our findings suggest that developmental phenotypes in GME-deficient lines are due to the structural alteration of RG-II and further underline the crucial role of the cross-linking of RG-II in the formation of the pectic network required for normal plant growth and development.


Asunto(s)
Carbohidrato Epimerasas/metabolismo , Pectinas/biosíntesis , Hojas de la Planta/enzimología , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/crecimiento & desarrollo , Conformación de Carbohidratos , Carbohidrato Epimerasas/genética , Silenciador del Gen , Genes de Plantas/fisiología , Solanum lycopersicum/genética , Pectinas/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética
13.
Plant Signal Behav ; 5(10): 1282-5, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20861690

RESUMEN

Plant sexual reproduction involves the growth of tip-polarized pollen tubes through the female tissues in order to deliver the sperm nuclei to the egg cells. Despite the importance of this crucial step, little is known about the molecular mechanisms involved in this spatial and temporal control of the tube growth. In order to study this process and to characterize the structural composition of the extracellular matrix of the male gametophyte, immunocytochemical and biochemical analyses of Arabidopsis pollen tube wall have been carried out. Results showed a well defined localization of cell wall epitopes with highly esterified homogalacturonan and arabinogalactan-protein mainly in the tip region, weakly methylesterified homogalacturonan back from the tip and xyloglucan and (1→5)-α-L-arabinan all along the tube. Here, we present complementary data regarding 1) the ultrastructure of the pollen tube cell wall and 2) the immunolocalization of homogalacturonan and arabinan epitopes in 16 h-old pollen tubes and in the stigma and the transmitting tract of the female organ. Discussion regarding the pattern of the distribution of the cell wall epitopes and the possible mechanisms of cell adhesion between the pollen tubes and the female tissues is provided.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Pared Celular/metabolismo , Flores/citología , Pectinas/metabolismo , Tubo Polínico/citología , Arabidopsis/ultraestructura , Pared Celular/ultraestructura , Epítopos/inmunología , Flores/metabolismo , Tubo Polínico/metabolismo , Tubo Polínico/ultraestructura , Polisacáridos/metabolismo , Coloración y Etiquetado
14.
Plant Physiol ; 153(4): 1563-76, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20547702

RESUMEN

During plant sexual reproduction, pollen germination and tube growth require development under tight spatial and temporal control for the proper delivery of the sperm cells to the ovules. Pollen tubes are fast growing tip-polarized cells able to perceive multiple guiding signals emitted by the female organ. Adhesion of pollen tubes via cell wall molecules may be part of the battery of signals. In order to study these processes, we investigated the cell wall characteristics of in vitro-grown Arabidopsis (Arabidopsis thaliana) pollen tubes using a combination of immunocytochemical and biochemical techniques. Results showed a well-defined localization of cell wall epitopes. Low esterified homogalacturonan epitopes were found mostly in the pollen tube wall back from the tip. Xyloglucan and arabinan from rhamnogalacturonan I epitopes were detected along the entire tube within the two wall layers and the outer wall layer, respectively. In contrast, highly esterified homogalacturonan and arabinogalactan protein epitopes were found associated predominantly with the tip region. Chemical analysis of the pollen tube cell wall revealed an important content of arabinosyl residues (43%) originating mostly from (1-->5)-alpha-L-arabinan, the side chains of rhamnogalacturonan I. Finally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of endo-glucanase-sensitive xyloglucan showed mass spectra with two dominant oligosaccharides (XLXG/XXLG and XXFG), both being mono O-acetylated, and accounting for over 68% of the total ion signals. These findings demonstrate that the Arabidopsis pollen tube wall has its own characteristics compared with other cell types in the Arabidopsis sporophyte. These structural features are discussed in terms of pollen tube cell wall biosynthesis and growth dynamics.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Pared Celular/química , Tubo Polínico/crecimiento & desarrollo , Microscopía Electrónica , Mucoproteínas/química , Pectinas/química , Proteínas de Plantas/química , Tubo Polínico/ultraestructura , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Glycobiology ; 20(5): 617-28, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20124190

RESUMEN

The structures of the pectic polysaccharide rhamnogalacturonan II (RG-II) pectin constituent are remarkably evolutionary conserved in all plant species. At least 12 different glycosyl residues are present in RG-II. Among them is the seldom eight-carbon sugar 3-deoxy-d-manno-octulosonic acid (Kdo) whose biosynthetic pathway has been shown to be conserved between plants and Gram-negative bacteria. Kdo is formed in the cytosol by the condensation of phosphoenol pyruvate with d-arabinose-5-P and then activated by coupling to cytidine monophosphate (CMP) prior to its incorporation in the Golgi apparatus by a Kdo transferase (KDTA) into the nascent polysaccharide RG-II. To gain new insight into RG-II biosynthesis and function, we isolated and characterized null mutants for the unique putative KDTA (AtKDTA) encoded in the Arabidopsis genome. We provide evidence that, in contrast to mutants affecting the RG-II biosynthesis, the extinction of the AtKDTA gene expression does not result in any developmental phenotype in the AtkdtA plants. Furthermore, the structure of RG-II from the null mutants was not altered and contained wild-type amount of Rha-alpha(1-5)Kdo side chain. The cellular localization of AtKDTA was investigated by using laser scanning confocal imaging of the protein fused to green fluorescent protein. In agreement with its cellular prediction, the fusion protein was demonstrated to be targeted to the mitochondria. These data, together with data deduced from sequence analyses of higher plant genomes, suggest that AtKDTA encodes a putative KDTA involved in the synthesis of a mitochondrial not yet identified lipid A-like molecule rather than in the synthesis of the cell wall RG-II.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Transferasas/genética , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Mutación , Pectinas/biosíntesis , Pectinas/química , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transferasas/química , Transferasas/aislamiento & purificación
16.
Ann Bot ; 105(3): 481-91, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20085918

RESUMEN

BACKGROUND AND AIMS: In flax hypocotyls, cadmium-induced reorientation of growth coincides with marked changes in homogalacturonan (HGA) epitopes that were recognized by JIM7 and JIM5 antibodies in the external tangential wall of the epidermis. In the present study, LM7 and 2F4 monoclonal antibodies were used, in addition to JIM5 and JIM7, to extend the investigation on the methyl-esterification pattern of HGA within various domains of the cortical tissues, including the cortical parenchyma where cell cohesion is crucial. METHODS: The PATAg (periodic acid thiocarbohydrazide-silver proteinate) test was applied to ultrathin sections so that the polysaccharides could be visualized and the ultrastructure studied. The monoclonal LM7, JIM5 and JIM7 antibodies that recognize differently methyl-esterified HGA were used. The monoclonal 2F4 antibody that is specific to a particular polygalacturonic acid conformation induced by a given calcium to sodium ratio was also applied. After immunogold labelling, the grids were stained with uranyl-acetate, the samples were observed using a transmission electron microscope and the gold particles were counted. KEY RESULTS: In the presence of cadmium, the increase of LM7 labelling in external tangential wall of the epidermis, together with a decrease of JIM7 labelling, suggested a specific role for randomly partially de-esterified HGA to counteract the radial swelling stress. Enhanced JIM5 and 2F4 labelling in the junctions of the inner tissues indicated that the presence of blockwise de-esterified HGA might oppose cell separation. CONCLUSIONS: The response of the hypocotyl to cadmium stress was to adapt the structure of the wall of cortical tissues by differently modulating the methyl-esterification pattern of HGA in various domains.


Asunto(s)
Cadmio/toxicidad , Pared Celular/efectos de los fármacos , Pectinas/metabolismo , Pared Celular/química , Esterificación
17.
Planta ; 230(5): 947-57, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19672621

RESUMEN

Rhamnogalacturonan II (RG-II) is a structurally complex cell wall pectic polysaccharide. Despite its complexity, both the structure of RG-II and its ability to dimerise via a borate diester are conserved in vascular plants suggesting that RG-II has a fundamental role in primary cell wall organisation and function. The selection and analysis of new mutants affected in RG-II formation represents a promising strategy to unravel these functions and to identify genes encoding enzymes involved in RG-II biosynthesis. In this paper, a novel fingerprinting strategy is described for the screening of RG-II mutants based on the mild acid hydrolysis of RG-II coupled to the analysis of the resulting fragments by mass spectrometry. This methodology was developed using RG-II fractions isolated from citrus pectins and then validated for RG-II isolated from the Arabidopsis mur1 mutant and irx10 irx10-like double mutant.


Asunto(s)
Arabidopsis/química , Citrus/química , Pectinas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Ácido Trifluoroacético/química , Secuencia de Carbohidratos , Pared Celular/química , Datos de Secuencia Molecular , Mutación/genética , Pectinas/aislamiento & purificación , Espectrometría de Masas en Tándem , Temperatura
18.
Plant Physiol ; 150(3): 1411-21, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19448034

RESUMEN

Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip.


Asunto(s)
Arabidopsis/citología , Pared Celular/metabolismo , Pectinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pared Celular/genética , Galactanos/metabolismo , Glucanos/análisis , Hexosiltransferasas/genética , Ácidos Hexurónicos/metabolismo , Inmunohistoquímica , Mutación , Pectinas/análisis , Pectinas/genética , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Xilanos/análisis
19.
Carbohydr Res ; 343(1): 67-72, 2008 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-18005949

RESUMEN

Isolated cell walls of Argania spinosa fruit pulp were fractionated into their polysaccharide constituents and the resulting fractions were analysed for monosaccharide composition and chemical structure. The data reveal the presence of homogalacturonan, rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II) in the pectic fraction. RG-I is abundant and contains high amounts of Ara and Gal, indicative of an important branching in this polysaccharide. RG-II is less abundant than RG-I and exists as a dimer. Structural characterisation of xyloglucan using enzymatic hydrolysis, gas chromatography, MALDI-TOF-MS and methylation analysis shows that XXGG, XXXG, XXLG and XLLG are the major subunit oligosaccharides in the ratio of 0.6:1:1.2:1.6. This finding demonstrates that the major neutral hemicellulosic polysaccharide is a galacto-xyloglucan. In addition, Argania fruit xyloglucan has no XUFG, a novel xyloglucan motif recently discovered in Argania leaf cell walls. Finally, the isolation and analysis of arabinogalactan-proteins showed that Argania fruit pulp is rich in these proteoglycans.


Asunto(s)
Glucanos/química , Pectinas/química , Polisacáridos/química , Sapotaceae/química , Xilanos/química , Secuencia de Carbohidratos , Pared Celular/química , Frutas/química , Monosacáridos/análisis
20.
Plant Physiol ; 140(4): 1406-17, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16500990

RESUMEN

The Arabidopsis (Arabidopsis thaliana) root epidermal bulger1-1 (reb1-1) mutant (allelic to root hair defective1 [rhd1]) is characterized by a reduced root elongation rate and by bulging of trichoblast cells. The REB1/RHD1 gene belongs to a family of UDP-D-Glucose 4-epimerases involved in the synthesis of D-Galactose (Gal). Our previous study showed that certain arabinogalactan protein epitopes were not expressed in bulging trichoblasts of the mutant. In this study, using a combination of microscopical and biochemical methods, we have investigated the occurrence and the structure of three major Gal-containing polysaccharides, namely, xyloglucan (XyG), rhamnogalacturonan (RG)-I, and RG-II in the mutant root cell walls. Our immunocytochemical data show that swollen trichoblasts were not stained with the monoclonal antibody CCRC-M1 specific for alpha-L-Fucp-(1-->2)-beta-D-Galp side chains of XyG, whereas they were stained with anti-XyG antibodies specific for XyG backbone. In addition, analysis of a hemicellulosic fraction from roots demonstrates the presence of two structurally different XyGs in reb1-1. One is structurally similar to wild-type XyG and the other is devoid of fuco-galactosylated side chains and has the characteristic of being insoluble. Similar to anti-XyG antibodies, anti-bupleuran 2IIC, a polyclonal antibody specific for galactosyl epitopes associated with pectins, stained all root epidermal cells of both wild type and reb1-1. Similarly, anti-RG-II antibodies also stained swollen trichoblasts in the mutant. In addition, structural analysis of pectic polymers revealed no change in the galactosylation of RG-I and RG-II isolated from reb1-1 root cells. These findings demonstrate that the reb1-1 mutation affects XyG structure, but not that of pectic polysaccharides, thus lending support to the hypothesis that biosynthesis of Gal as well as galactosylation of complex polysaccharides is regulated at the polymer level.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pared Celular/metabolismo , Galactosa/metabolismo , Polisacáridos/metabolismo , UDPglucosa 4-Epimerasa/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/fisiología , Glucanos/análisis , Glucanos/metabolismo , Glucanos/ultraestructura , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Pectinas/análisis , Pectinas/metabolismo , Pectinas/ultraestructura , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Polisacáridos/análisis , Polisacáridos/ultraestructura , UDPglucosa 4-Epimerasa/fisiología , Xilanos/análisis , Xilanos/metabolismo , Xilanos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA