Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(4): 111, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568247

RESUMEN

Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.


Asunto(s)
Interacciones de Hierba-Droga , Metales Pesados , Metales Pesados/toxicidad , Procesamiento Proteico-Postraduccional , Suelo
2.
Sci Total Environ ; 926: 172089, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38554966

RESUMEN

Both alien plant invasions and soil microplastic pollution have become a concerning threat for terrestrial ecosystems, with consequences on the human well-being. However, our current knowledge of microplastic effects on the successful invasion of plants remains limited, despite numerous studies demonstrating the direct and indirect impacts of microplastics on plant performance. To address this knowledge gap, we conducted a greenhouse experiment involving the mixtures of soil and low-density polyethylene (LDPE) microplastic pellets and fragments at the concentrations of 0, 0.5 % and 2.0 %. Additionally, we included Solidago decurrens (native plant) and S. canadensis (alien invasive plant) as the target plants. Each pot contained an individual of either species, after six-month cultivation, plant biomass and antioxidant enzymes, as well as soil properties including soil moisture, pH, available nutrient, and microbial biomass were measured. Our results indicated that microplastic effects on soil properties and plant growth indices depended on the Solidago species, microplastic shapes and concentrations. For example, microplastics exerted positive effects on soil moisture of the soil with native species but negative effects with invasive species, which were impacted by microplastic shapes and concentrations, respectively. Microplastics significantly impacted catalase (P < 0.05) and superoxide dismutase (P < 0.01), aboveground biomass (P < 0.01), and belowground/aboveground biomass (P < 0.01) of the native species depending on microplastic shapes, but no significant effects on those of the invasive species. Furthermore, microplastics effects on soil properties, nutrient, nutrient ratio, and plant antioxidant enzyme activities contributed to plant biomass differently among these two species. These results suggested that the microplastics exerted a more pronounced impact on native Solidago plants than the invasive ones. This implies that the alien invasive species displays greater resistance to microplastic pollution, potentially promoting their invasion. Overall, our study contributes to a better understanding of the promoting effects of microplastic pollution on plant invasion.


Asunto(s)
Suelo , Solidago , Humanos , Suelo/química , Ecosistema , Especies Introducidas , Microplásticos , Plásticos/toxicidad , Antioxidantes , Plantas
3.
Environ Pollut ; 342: 123022, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008252

RESUMEN

Harmful cyanobacterial blooms have been a global environmental problem. Discharge of anthropogenic pollutants and excess nutrient import into the freshwater bodies may be the biggest drivers of bloom. Bisphenol A (BPA), a typical endocrine-disrupting compound, is frequently detected in different natural waters, which was a threat to the balance of aquatic ecosystem. Yet mechanistic understanding of the bloom and microcystin generation under combined pollution conditions is still a mystery. Herein, the cellular and metabolomic responses to BPA exposure and phosphorus (P) levels in Microcystis aeruginosa were investigated throughout its growth period. The results showed that the stress response of M. aeruginosa to BPA was characterized by a decrease in growth density, an increase in P utilization, an increase in ATPase activity, a disruption of the photosynthetic system, and an increase in the production and release of microcystins (MCs). However, these effects are highly dependent on the growth stage of the cyanobacterial cell and the magnitude of the added P concentration. In addition, exposure to a high concentration (10 µM) of BPA significantly stimulated the production of 20.7% more and the release of 29.2% more MCs from M. aeruginosa cells at a low P level. The responses of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) suggested that exposure to BPA exposure at a low P level can lead to oxidative stress in M. aeruginosa. In addition, the differentially expressed 63 metabolites showed that cell growth, energy generation and photosynthesis were mainly regulated by the metabolic network of 3-phosphoglyceric acid (3-PGA), D-glucose 6-phosphate, UDP-α-D-galactose and UDP-N-acetyl-D-galactosamine (UDP-GalNAc) metabolism. Amino acids and lipid metabolism collectively mediated MCs production and release. These findings will provide important references for the control of harmful cyanobacterial blooms under combined pollution.


Asunto(s)
Compuestos de Bencidrilo , Cianobacterias , Microcystis , Fenoles , Microcystis/metabolismo , Fósforo/metabolismo , Ecosistema , Cianobacterias/metabolismo , Microcistinas/toxicidad , Microcistinas/metabolismo , Uridina Difosfato/metabolismo
4.
Ecotoxicology ; 32(10): 1221-1232, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38032393

RESUMEN

The phytotoxicity of invasive plants (IPS) has been identified as one of the main factors influencing their invasion success. The invasion of IPS can occur to varying degrees in the habitats. Two IPS can invade one habitat. This study aimed to evaluate the mono- and co-phytotoxicity of two Asteraceae IPS Solidago canadensis L. and Bidens pilosa L. with different invasion degrees (including light invasion (relative abundance <50%) and heavy invasion (relative abundance ≥50%)) on the horticultural Asteraceae species Lactuca sativa L., through a hydroponic experiment conducted on 9 cm Petri dishes. Leaf extracts of the two IPS can cause significant mono- and co-phytotoxicity. The mono- and co-phytotoxicity of the two IPS were concentration-dependent. The mono-phytotoxicity of S. canadensis was significantly increased with increasing invasion degree, but the opposite was true for the mono-phytotoxicity of B. pilosa. Leaf extracts of B. pilosa with light invasion caused stronger phytotoxicity than those of S. canadensis with light invasion. There may be an antagonistic effect for the co-phytotoxicity caused by mixed leaf extracts of the two IPS compared with those of either S. canadensis or B. pilosa. The phytotoxicity of the two IPS on the growth performance of neighboring plants may play a more important role in their mono-invasion than in their co-invasion. The phytotoxicity appeared to affect the growth performance of S. canadensis individuals more significantly when the invasion was heavy, while the growth performance of B. pilosa individuals seemed to be more influenced by phytotoxicity when the invasion was light. Consequently, the concentration of leaf extracts of IPS, the invasion degree of IPS, the species identity of IPS, and the species number of IPS modulated the mono- and co-phytotoxicity of the two IPS.


Asunto(s)
Asteraceae , Bidens , Solidago , Humanos , Especies Introducidas
5.
Plants (Basel) ; 12(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37176919

RESUMEN

Invasive species and rapid climate change are affecting the control of new plant diseases and epidemics. To effectively manage these diseases under changing environmental conditions, a better understanding of pathophysiology with holistic approach is needed. Multiomics approaches can help us to understand the relationship between plants and microbes and construct predictive models for how they respond to environmental stresses. The application of omics methods enables the simultaneous analysis of plant hosts, soil, and microbiota, providing insights into their intricate relationships and the mechanisms underlying plant-microbe interactions. This can help in the development of novel strategies for enhancing plant health and improving soil ecosystem functions. The review proposes the use of omics methods to study the relationship between plant hosts, soil, and microbiota, with the aim of developing a new technique to regulate soil health. This approach can provide a comprehensive understanding of the mechanisms underlying plant-microbe interactions and contribute to the development of effective strategies for managing plant diseases and improving soil ecosystem functions. In conclusion, omics technologies offer an innovative and holistic approach to understanding plant-microbe interactions and their response to changing environmental conditions.

6.
Ecotoxicology ; 32(1): 114-126, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36652123

RESUMEN

Most of the allelopathic studies have focused on the independent allelopathy of one invasive plant, but have ignored the co-allelopathy of the two invasives. The variations in the type of acid rain can modulate the invasiveness of invasives via the changes in the allelopathy. Thus, it is vital to elucidate the allelopathy of invasives, particularly the co-allelopathy of the two invasives, under acid rain with different types, to illuminate the mechanisms driving the co-invasion of two invasives under diversified acid rain. However, little progress has been finished in this aspect presently. This study aimed to evaluate the co-allelopathy of two Asteraceae invasives Solidago canadensis L. and Erigeron annuus L. treated with acid rain with different nitrogen-to-sulfur ratios on seed germination and seedling growth of the horticultural Asteraceae species Lactuca sativa L. via a hydroponic experiment. Aqueous extracts of the two Asteraceae invasives generated obvious allelopathy on L. sativa. S. canadensis aqueous extracts caused stronger allelopathy. There may be an antagonistic effect for the co-allelopathy of the two Asteraceae invasives. Nitric acid at pH 5.6 weakened the allelopathy of the two Asteraceae invasives, but the other types of acid rain strengthened the allelopathy of the two Asteraceae invasives. The allelopathy of the two Asteraceae invasives increases with the increasing acidity of acid rain, but the allelopathy of the two Asteraceae invasives decreases with the increasing nitrogen-to-sulfur ratio of acid rain. Accordingly, the species number of invasives, and the acidity and type of acid rain modulated the impacts of acid rain on the allelopathy of the two Asteraceae invasives.


Asunto(s)
Lluvia Ácida , Asteraceae , Solidago , Germinación , Alelopatía , Plantones , Extractos Vegetales
7.
Environ Pollut ; 316(Pt 1): 120522, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309303

RESUMEN

Antibiotics and microplastics including nanoplastics are emerging contaminants which have become global environmental issues. The application of antibiotics along with microplastics in soil and their entrance in food chain may pose a major threat to human health. The single and combined exposure of polystyrene microplastic (MPS), norfloxacin (NF) and sulfadiazine (SFD) on Chrysanthemum coronarium L. a medicinal food crop, were investigated. Accumulation of nutrient element contents (Fe, Mn, Mg, Zn, K) differentially responded to the single or combined treatments compared to the control. Scanning electron microscopy and transmission electron microscopy analysis indicated that MPS, NF and SFD accumulated in roots, shoots, and leaves and affected their ultrastructure. Compared with that of the single contamination, the co-contamination of microplastics and antibiotics had a greater effect on leaf metabolites due to combination of multiple abiotic stresses. MPS, NF and SFD accumulated from roots and transported to shoots and leaves which ultimately impacts plant metabolites and, nutritional value. They subsequently impact agricultural sustainability and food safety of medicinal food plants. This investigation suggests the possible ecological risks of microplastics to medicinal food plants, especially in co-exposure with organic pollutants like antibiotics and help to reveal potential mechanisms of phytotoxicity of different antibiotics with polyethylene microplastic.


Asunto(s)
Chrysanthemum , Microplásticos , Humanos , Plásticos , Poliestirenos/toxicidad , Norfloxacino/toxicidad , Sulfadiazina , Antibacterianos/toxicidad
8.
Artículo en Inglés | MEDLINE | ID: mdl-36231243

RESUMEN

Alien plant invasion and residual soil microplastics (MPs) are growing threats to agricultural crop production. This study determined the adverse effects of Canadian goldenrod (Solidago canadensis L.) invasion and residual soil MPs on rice growth and development. The biomass, phenological indices, photosynthetic parameters, and antioxidant enzyme activities of rice were measured on the 50th and 80th day of post-plantation. Biomass and phenotypic results indicated the more harmful effects of the combination of S. canadensis invasion and residual soil MPs compared to S. canadensis invasion or residual soil MPs effects alone. Moreover, the interaction effect of S. canadensis invasion and residual soil MPs markedly reduced the ascorbate peroxidase and catalase belowground, while they increased in the aboveground parts of the rice. However, the S. canadensis invasion and residual soil MPs interactive treatments lowered the superoxide dismutase concentrations in the belowground parts of the rice plants while elevating the peroxidase and reactive oxygen species concentrations in both the belowground and aboveground parts compared to the other treatments. Among all treatments, S. canadensis invasion alone had the most negligible negative impact on rice biomass and growth indices. Our study suggests that soil MPs could negatively affect crop production with invasive alien plants, and the combined effects were more harmful than either of the single factors. Our findings will lay the groundwork for analyzing the impacts of invasive alien plants on rice crops.


Asunto(s)
Oryza , Solidago , Antioxidantes , Ascorbato Peroxidasas , Canadá , Catalasa , Especies Introducidas , Microplásticos , Plásticos , Especies Reactivas de Oxígeno , Suelo , Superóxido Dismutasa
9.
Ecotoxicol Environ Saf ; 243: 114012, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36030689

RESUMEN

Co-invasion by two invasive plant species (IPS) can occur in the same habitat. Diversified acid deposition may change the co-invasion process by altering litter decomposition and plant-soil feedback signalling. This study examined the co-decomposition of two Asteraceae IPS (Solidago canadensis L. and Bidens pilosa L.) on litter decomposition rate, soil enzyme activities, and soil N-fixing bacterial communities under diversified acid deposition (mixed acid deposition at pH 5.6 and at pH 4.5, sulfuric acid at pH 4.5, and nitric acid at pH 4.5). B. pilosa litter degraded faster than S. canadensis litter. Acid deposition at higher acidity accelerated the decomposition rate of both pure S. canadensis litter and the equally mixed litters from the two Asteraceae IPS. Antagonistic responses may occur during the co-decomposition of the two Asteraceae IPS with mixed acid deposition, regardless of the pH, as well as with nitric acid deposition at pH 4.5; in contrast, there may be neutral responses for the co-decomposition process with sulfuric acid at pH 4.5. The type of acid deposited may be one of the key factors affecting the intensity of the mixing effect affecting the co-decomposition. Acid deposition at higher acidity weakened the antagonistic responses for the co-decomposition of the two Asteraceae IPS compared with the response to weak acids. Together, these results indicate that acid deposition at higher acidity could facilitate the co-invasion of the two Asteraceae IPS mainly through accelerated litter decomposition as well as weakened antagonistic responses for co-decomposition.


Asunto(s)
Asteraceae , Solidago , Ecosistema , Especies Introducidas , Ácido Nítrico , Hojas de la Planta , Plantas , Suelo/química , Ácidos Sulfúricos
10.
Sci Total Environ ; 813: 152628, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34963604

RESUMEN

Two invasive plant species (IPS) can co-invade the same plant community. As the number of IPS increases under the co-invasion of two IPS, plant taxonomic and functional diversity, community invasibility, community stability, invasion resistance, and invasion intensity and invasiveness of IPS and their interrelationships may be altered. This study aimed to quantify the contribution of plant taxonomic and functional diversity, community invasibility, community stability, and invasion intensity and invasiveness of IPS to the invasion resistance of native plant communities under the co-invasion of the two IPS Erigeron annuus (L.) Pers. and Solidago canadensis L. in eastern China. This study also defined a method to quantify the invasion resistance of native plant communities designated the invasion resistance index. The community-weighted mean trait values of native plants and plant diversity are the factors that are the most critical to determine the invasion resistance of native plant communities. Thus, the invasion resistance of native plant communities primarily depends on the three following factors: the relative abundance of natives, the growth performance of natives, and the diversity of natives. All levels of invasion significantly decrease the invasion resistance of native plant communities. The two IPS antagonistically affect the invasion resistance of native plant communities less under co-invasion compared with their independent invasion.


Asunto(s)
Erigeron , Solidago , Ecosistema , Especies Introducidas , Plantas
11.
Microb Ecol ; 83(4): 960-970, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34279696

RESUMEN

Both soil microbes and soil N:P ratios can affect plant growth, but it is unclear whether they can interact to alter plant growth and whether such an interactive effect depends on nutrient levels. Here, we tested the hypothesis that soil microbes can ameliorate the negative effects of nutrient imbalance caused by low or high N:P ratios on plant growth and that such an ameliorative effect of soil microbes depends on nutrient supply levels. We grew individuals of six populations of the clonal plant Solidago canadensis at three N:P ratios (low (1.7), intermediate (15), and high (135)), under two nutrient levels (low versus high) and in the presence versus absence of soil microbes. The presence of soil microbes significantly increased biomass of S. canadensis at all three N:P ratios and under both nutrient levels. Under the low-nutrient level, biomass, height, and leaf number of S. canadensis did not differ significantly among the three N:P ratio treatments in the absence of soil microbes, but they were higher at the high than at the low and the intermediate N:P ratio in the presence of soil microbes. Under the high-nutrient level, by contrast, biomass, height, and leaf number of S. canadensis were significantly higher at the low than at the high and the intermediate N:P ratio in the absence of soil microbes, but increased with increasing the N:P ratio in the presence of soil microbes. In the presence of soil microbes, number of ramets (asexual individuals) and the accumulation of N and P in plants were significantly higher at the high than at the low and the intermediate N:P ratio under both nutrient levels, whereas in the absence of soil microbes, they did not differ significantly among the three N:P ratio regardless of the nutrient levels. Our results provide empirical evidence that soil microbes can alter effects of N:P ratios on plant performance and that such an effect depends on nutrient availability. Soil microbes may, therefore, play a role in modulating ecosystem functions such as productivity and carbon and nutrient cycling via modulating nutrient imbalance caused by low and high N:P ratios.


Asunto(s)
Solidago , Biomasa , Ecosistema , Humanos , Nitrógeno/análisis , Nutrientes , Suelo
12.
Sci Total Environ ; 768: 144518, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33454473

RESUMEN

Invasive alien plants (IAPs) can negatively affect plant taxonomic diversity, community stability, and invasibility in the invaded habitats. This study aimed to assess the degree of influence of the IAP Solidago canadensis L. under various levels of invasion (i.e., light, moderate, and heavy invasion based on its relative abundance in the invaded communities) on plant taxonomic diversity, community stability, and invasibility. In addition, we determined the contribution of plant taxonomic diversity to community stability and invasibility under various levels of S. canadensis invasion. The degree of influence of S. canadensis on plant taxonomic diversity and community stability increases as the level of S. canadensis invasion increases. Community invasibility increases as the level of S. canadensis invasion increases. The competitive advantage of S. canadensis is negatively associated with all indexes of plant taxonomic diversity and community stability but positively connected with community invasibility. Community stability is positively related to Shannon's diversity and Simpson's dominance indexes but negatively associated with community invasibility. Inversely, communities were more likely to be invaded when they had less plant taxonomic diversity. Thus, plant communities with lower values of plant taxonomic diversity and community stability are more vulnerable to S. canadensis invasion. Plant diversity causes a greater pressure on community stability than the other indexes of plant taxonomic diversity under various levels of S. canadensis invasion. However, the contribution intensity of the number of plant species to community invasibility is higher than the other indexes of plant taxonomic diversity under various levels of S. canadensis invasion.


Asunto(s)
Solidago , Biodiversidad , Ecosistema , Especies Introducidas , Solidago/genética
13.
Microb Ecol ; 80(4): 837-845, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32561944

RESUMEN

Soil microbes may greatly affect plant growth. While plants are commonly associated with diverse communities of soil microbes, complementary roles of different microbial communities that may stimulate synergistic effects on plant growth are not adequately tested. Also, such synergistic effects may vary with environmental conditions such as soil nutrient and water availability. We conducted a greenhouse experiment with a widespread clonal plant Solidago canadensis. The experiment was a factorial design with four levels of soil microbial inoculation (fresh soil inocula from grasslands in northern and southern China that were expected to differ in soil microbial composition, a mixture of the two fresh soil inocula, and a sterilized mixed inoculum control), two levels of nutrient availability (low vs. high), and two levels of water supply (low vs. high, i.e., 1376 vs. 352 mm per year). Irrespective of water supply and nutrient availability, total, aboveground, and belowground mass of S. canadensis were generally higher when the plant grew in soil inoculated with a mixture of soil microbes from the south and north of China (in the mixed inoculum treatment) than when it grew in soil inoculated with soil microbes from only the north or the south or the sterilized control. Such effects of soil microbes on total and aboveground mass were stronger under high than under low nutrient availability and also under high than under low water supply. Our results suggest that interactions of different soil microbial communities can result in a synergistic effect on plant growth and such a synergistic effect depends on environmental conditions. The findings shed light on the importance of plant-microbe interactions during the spreading of some plant species in face of increased atmospheric nutrient deposition coupled with altered rainfall pattern due to global change.


Asunto(s)
Microbiota , Nutrientes/metabolismo , Microbiología del Suelo , Suelo/química , Solidago/crecimiento & desarrollo , Agua/metabolismo
14.
Chemosphere ; 246: 125717, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31918081

RESUMEN

It is important to illuminate the effects of litter decomposition of invasive alien species on soil N-fixing bacterial communities (SoNiBa), especially under heavy metal pollution to better outline the mechanisms for invasion success of invasive alien species. This study attempts to identify the effects of litter decomposition of Solidago canadensis L. on SoNiBa under cadmium (Cd) pollution with different concentrations (i.e., low concentration, 7.5 mg/kg soil; high concentration, 15 mg/kg soil) via a polyethylene litterbags-experiment. Electrical conductivity and total N of soil were the most important environmental factors for determining the variations of SoNiBa composition. S. canadensis did not significantly affect the alpha diversity of SoNiBa but significantly affect the beta diversity of SoNiBa and SoNiBa composition. Thus, SoNiBa composition, rather than alpha diversity of SoNiBa, was the most important determinant of the invasion success of S. canadensis. Cd with 15 mg/kg soil did not address distinct effects on alpha diversity of SoNiBa, but Cd with 7.5 mg/kg soil noticeably raised the number of species and species richness of SoNiBa mainly due to the hormonal effects. The combined S. canadensis and Cd with 15 mg/kg soil obviously decreased cumulative mass losses and the rate of litter decomposition (k) of S. canadensis, but the combined S. canadensis and Cd with 7.5 mg/kg soil evidently accelerated cumulative mass losses and k of S. canadensis. Thus, Cd with 7.5 mg/kg soil can accelerate litter decomposition of S. canadensis, but Cd with 15 mg/kg soil can decline litter decomposition of S. canadensis.


Asunto(s)
Biodegradación Ambiental/efectos de los fármacos , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Solidago/microbiología , Ecosistema , Contaminación Ambiental , Especies Introducidas , Metales Pesados , Fijación del Nitrógeno , Hojas de la Planta , Suelo
15.
Environ Pollut ; 242(Pt B): 2088-2095, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29945818

RESUMEN

Soil contamination with antibiotics and antibiotic resistant bacteria/genes (ARB/ARGs) has becoming an emerging environmental problem. Moreover, the mixed pollutants' transfer and accumulation from soil to tuberous vegetables has posed a great threat against food security and human health. In this work, the application of two absorbing materials (maize biochar and sulfate modified eggshell) was able to reduce the poisonous effect of soil antibiotics on potato root system by stimulate the dissipation of water-soluble antibiotics in soil; and also improve food quality by increasing potato starch, protein, fat, and vitamins. Meanwhile, both amendments could effectively decrease the classes and the accumulative abundance of ARB and ARGs (sulI, sulII, catI, catII, ermA, ermB) in the edible parts of potato. The lowest abundance of ARGs was detected in the biochar application treatment, with the accumulative ARG level of 8.9 × 102 and 7.2 × 102 copies mL-1 in potato peel (sull + catI + ermA) and tuberous root (sulI), respectively. It is the first study to demonstrate the feasibility of biochar and eggshell derived from agricultural wastes as green absorbing materials to reduce soil antibiotic, ARB, and ARGs accumulation risk in tuberous vegetable.


Asunto(s)
Antibacterianos/química , Carbón Orgánico/química , Farmacorresistencia Microbiana/fisiología , Cáscara de Huevo/química , Restauración y Remediación Ambiental/métodos , Genes Bacterianos , Contaminantes del Suelo/química , Suelo/química , Solanum tuberosum/metabolismo , Agricultura , Animales , Antibacterianos/análisis , Bacterias/efectos de los fármacos , Contaminación Ambiental , Contaminantes del Suelo/análisis
16.
Mar Pollut Bull ; 126: 179-183, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29421085

RESUMEN

Nutriment distributions might influence Cd distribution and Cd tolerance in mangrove plant roots. To demonstrate this, Aegiceras corniculatum was stressed by Cd, and the distributions of Cd, Ca, P, Na and Cl in plant roots were detected with the aid of SEM-EDX. It was found that endodermis, pith and xylem were the predominant tissues for retardation and regional enrichment of Cd. Na and Cl distributions suggest a critical role of salt resistance tissues on Cd tolerance in roots. P participated in Cd retardation and regional enrichment of endodermis and xylem. P, Na, Cl and Ca distribution had a high correlation to that of Cd in roots. The synergetic accumulation between Ca and Cd could be a crucial mechanism for Cd tolerance in A. corniculatum roots. In conclusion, the research of Cd and nutriment distributions in A. corniculatum roots deepens the understanding on Cd tolerance in mangrove plants.


Asunto(s)
Cadmio/metabolismo , Contaminantes Ambientales/metabolismo , Raíces de Plantas/metabolismo , Primulaceae/metabolismo , Cadmio/toxicidad , Calcio/metabolismo , Contaminantes Ambientales/toxicidad , Fósforo/metabolismo , Raíces de Plantas/efectos de los fármacos , Primulaceae/efectos de los fármacos , Sodio/metabolismo , Cloruro de Sodio/metabolismo
17.
Ecotoxicology ; 25(3): 555-62, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26826094

RESUMEN

Invasive species can exhibit allelopathic effects on native species. Meanwhile, the types of acid deposition are gradually changing. Thus, the allelopathic effects of invasive species on seed germination and growth of native species may be altered or even enhanced under conditions with diversified acid deposition. This study aims to assess the allelopathic effects (using leaves extracts) of invasive plant Solidago canadensis on seed germination and growth of native species Lactuca sativa treated with five types of acid deposition with different SO4(2-) to NO3(-) ratios (1:0, sulfuric acid; 5:1, sulfuric-rich acid; 1:1, mixed acid; 1:5, nitric-rich acid; 0:1, nitric acid). Solidago canadensis leaf extracts exhibited significantly allelopathic effects on germination index, vigor index, and germination rate index of L. sativa. High concentration of S. canadensis leaf extracts also similarly exhibited significantly allelopathic effects on root length of L. sativa. This may be due to that S. canadensis could release allelochemicals and then trigger allelopathic effects on seed germination and growth of L. sativa. Acid deposition exhibited significantly negative effects on seedling biomass, root length, seedling height, germination index, vigor index, and germination rate index of L. sativa. This may be ascribed to the decreased soil pH values mediated by acid deposition which could produce toxic effects on seedling growth. Sulfuric acid deposition triggered more toxic effects on seedling biomass and vigor index of L. sativa than nitric acid deposition. This may be attributing to the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects mediated by nitric deposition. All types of acid deposition significantly enhanced the allelopathic effects of S. canadensis on root length, germination index, vigor index, and germination rate index of L. sativa. This may be due to the negatively synergistic effects of acid deposition and S. canadensis on seed germination and growth of L. sativa. The ratio of SO4(2-) to NO3(-) in acid deposition was an important factor that profoundly affected the allelopathic effects of S. canadensis on the seed germination and growth of L. sativa possibly because the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects triggered by nitric deposition. Thus, the allelopathic effects of invasive species on seed germination and growth of native plants might be enhanced under increased and diversified acid deposition.


Asunto(s)
Germinación/efectos de los fármacos , Especies Introducidas , Lactuca/efectos de los fármacos , Feromonas/toxicidad , Contaminantes del Suelo/toxicidad , Suelo/química , Solidago/fisiología , Monitoreo del Ambiente
18.
Ann Bot ; 114(2): 425-33, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24825293

RESUMEN

BACKGROUND AND AIMS: Invasive clonal plants have two reproduction patterns, namely sexual and vegetative propagation. However, seedling recruitment of invasive clonal plants can decline as the invasion process proceeds. For example, although the invasive clonal Wedelia trilobata (Asteraceae) produces numerous seeds, few seedlings emerge under its dense population canopy in the field. In this study it is hypothesized that light limitation and the presence of a thick layer of its own litter may be the primary factors causing the failure of seedling recruitment for this invasive weed in the field. METHODS: A field survey was conducted to determine the allocation of resources to sexual reproduction and seedling recruitment in W. trilobata. Seed germination was also determined in the field. Effects of light and W. trilobata leaf extracts on seed germination and seedling growth were tested in the laboratory. KEY RESULTS: Wedelia trilobata blooms profusely and produces copious viable seeds in the field. However, seedlings of W. trilobata were not detected under mother ramets and few emerged seedlings were found in the bare ground near to populations. In laboratory experiments, low light significantly inhibited seed germination. Leaf extracts also decreased seed germination and inhibited seedling growth, and significant interactions were found between low light and leaf extracts on seed germination. However, seeds were found to germinate in an invaded field after removal of the W. trilobata plant canopy. CONCLUSIONS: The results indicate that lack of light and the presence of its own litter might be two major factors responsible for the low numbers of W. trilobata seedlings found in the field. New populations will establish from seeds once the limiting factors are eliminated, and seeds can be the agents of long-distance dispersal; therefore, prevention of seed production remains an important component in controlling the spread of this invasive clonal plant.


Asunto(s)
Luz , Hojas de la Planta/fisiología , Malezas/fisiología , Reproducción Asexuada , Plantones/crecimiento & desarrollo , Wedelia/fisiología , Wedelia/efectos de la radiación , Análisis de Varianza , China , Células Clonales , Germinación/efectos de los fármacos , Germinación/efectos de la radiación , Extractos Vegetales/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de la radiación , Malezas/efectos de los fármacos , Malezas/efectos de la radiación , Plantones/efectos de los fármacos , Plantones/efectos de la radiación , Wedelia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA