Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(14): 7818-7831, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38466922

RESUMEN

This study aimed to compare the structural features and functional properties of polysaccharides from single-clove garlic (SGPs) and multiclove garlic (MGPs) and to establish their structure-function relationships. Both SGPs and MGPs were identified as fructans consisting mainly of →1)-ß-d-Fruf (2→ and →6)-ß-d-Fruf (2→ residues but differed in average molecular weights (6.76 and 5.40 kDa, respectively). They shared similar thermodynamic properties, X-ray diffraction patterns, and high gastrointestinal digestive stability. These two purified fructans could dose-dependently scavenge free radicals, reduce oxidized metals, and effectively alleviate metronidazole-induced oxidative stress and CuSO4-induced inflammation in zebrafish via inhibiting the overexpression of inflammation-related proteins and cytokines. SGPs showed lower free radical scavenging activity in vitro than MGPs but higher antioxidant and anti-inflammatory activities in vivo. Taken together, the molecular weight was the main structural difference between the two garlic fructans of different varieties, which is a potential reason for their differences in biological activities.


Asunto(s)
Ajo , Syzygium , Animales , Fructanos/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Ajo/química , Pez Cebra/metabolismo , Inflamación
2.
Crit Rev Food Sci Nutr ; : 1-28, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882781

RESUMEN

Gardenia fruit (GF) is the mature fruit of Gardenia jasminoides Ellis, boasting a rich array of nutrients and phytochemicals. Over time, GF has been extensively utilized in both food and medicinal contexts. In recent years, numerous studies have delved into the chemical constituents of GF and their associated pharmacological activities, encompassing its phytochemical composition and health-promoting properties. This review aims to provide a critical and comprehensive summary of GF research, covering nutrient content, extraction technologies, and potential health benefits, offering new avenues for future investigations and highlighting its potential as an innovative food resource. Additionally, the review proposes novel industrial applications for GF, such as utilizing gardenia yellow/red/blue pigments in the food industry and incorporating it with other herbs in traditional Chinese medicine. By addressing current challenges in developing GF-related products, this work provides insights for potential applications in the cosmetics, food, and health products industries. Notably, there is a need for the development of more efficient extraction methods to harness the nutritional components of GF fully. Further research is needed to understand the specific molecular mechanisms underlying its bioactivities. Exploring advanced processing techniques to create innovative GF-derived products will show great promise for the future.

3.
Food Funct ; 12(9): 3831-3841, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33977958

RESUMEN

The aim of the present study was to determine the inhibitory effects and the potential underlying mechanisms of a novel Pleurotus eryngii ß-type glycosidic polysaccharide (WPEP) on colitis. To achieve this, sixty CD-1 (ICR) mice were divided into six groups including healthy and colitic mice treated with or without WPEP at two different doses (n = 10). The results showed that WPEP displayed a significant inhibitory effect on colitis as indicated by the lowered disease activity index in the treated colitic mice compared to the untreated colitic mice (2.78 ± 0.50 to 1.80 ± 0.17). A decrease in pro-inflammatory cytokine concentrations and pro-inflammatory protein expressions and an increase in the colon length (9.31 ± 0.59 cm to 10.89 ± 1.20 cm) along with histological improvements were also observed in the treated colitic mice compared to the untreated colitic mice in the present study. Flow cytometry and western blotting analysis revealed that these anti-colitis effects were associated with decreased accumulation of CD45+ immune cells, CD45 + F4/80+ macrophages and CD45 + Gr1+ neutrophils. Moreover, the 16s rRNA sequencing analysis of the gut microbiota revealed that WPEP partially reversed gut microbiota dysbiosis in the colitic mice including the decreased abundance of Akkermansia muciniphila (35.80 ± 9.10% to 18.24 ± 6.23%) and Clostridium cocleatum (2.34 ± 1.78% to 0.011 ± 0.003%) and the increased abundance of Bifidobacterium pseudolongum (3.48 ± 2.72% to 9.65 ± 3.74%), Lactobacillus reuteri (0.007 ± 0.002% to 0.21 ± 0.12%), Lactobacillus salivarius (1.23 ± 0.87% to 2.22 ± 1.53%) and Ruminococcus bromii (0.009 ± 0.001% to 3.83 ± 1.98%). In summary, our results demonstrated that WPEP could be utilized as a functional food component in colitis management as well as a potential prebiotic agent to improve inflammation-related disorders.


Asunto(s)
Colitis/dietoterapia , Colon , Suplementos Dietéticos , Glicósidos/administración & dosificación , Pleurotus/química , Animales , Colitis/inducido químicamente , Colitis/inmunología , Colitis/patología , Colon/inmunología , Colon/metabolismo , Colon/patología , Citocinas/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas/metabolismo
4.
J Food Sci ; 85(9): 2822-2831, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32794226

RESUMEN

The anti-inflammatory effects of two newly identified Pleurotus eryngii polysaccharides (WPEP, NPEP) were determined in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in this study. Characterization analysis revealed that molecular weights of WPEP and NPEP were 167 and 274 kDa, and were mainly composed of glucose with ß-type glycosidic linkages. WPEP and NPEP could significantly inhibit LPS-induced inflammatory responses by regulating the production of NO, Protaglandin E2 (PGE2 ), Interleukin-1ß (IL-1ß), Tumor necrosis factor-α (TNF-α), and Interleukin-6 (IL-6). This was through the blocking of the activation of Mitogen-activated protein kinase (MAPK) pathway by inhibiting phosphorylation of p38, extracellular regulation of protein kinases 1/2, and stress-activated protein kinase/jun aminoterminal kinase. Moreover, WPEP and NPEP inhibited NF-κB signaling by reducing nuclear translocation and phosphorylation of p65. Overall, our results, for the first time identified two P. eryngii polysaccharides and demonstrated the related anti-inflammatory effects, which indicated the favorable potential of P. eryngii polysaccharide as specific functional foods. PRACTICAL APPLICATION: This study prepared and characterized newly identified Pleurotus eryngii water-soluble polysaccharide fractions and elucidated the nutritional benefits, mainly the immune response related to anti-inflammatory activities by utilizing lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Collectively, results of this study suggested that the P. eryngii polysaccharide fractions could be considered as potential candidates for exploration in the development of new immunomodulatory agent or functional supplementary foods.


Asunto(s)
Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Pleurotus/química , Polisacáridos/farmacología , Animales , Antiinflamatorios/química , Dinoprostona/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , FN-kappa B/genética , FN-kappa B/inmunología , Extractos Vegetales/química , Polisacáridos/química , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA