Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 412: 135528, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36716624

RESUMEN

This study elucidated the biosynthesis and changing behaviors of organic sulfide in shiitake mushrooms upon hot-air drying treatment. The changes of aw, moisture migration, contours of taste and flavor, organic sulfide, and 4 key enzyme activities were monitored throughout three drying procedures (CT/ST1/ST2). Results showed that drying rate was related to the moisture migration. Key enzymes of γ-GTase, ASFase and CS lyase were heat-resistant proteases, while C-Dase exhibited low thermal stability with the activity decreased during treatment. A total of 17 organic sulfides were identified and PLS analyses suggested 6 cyclic polysulfides were formed by C-Dase desulfurization, while 5 thioethers generation were related to the thermal cleavage of direct precursors (straight-chain di/tris/tetrasulfonyl esters) and Maillard reaction. These results indicated that ST2 drying procedures had a positive effect on the formation of cyclic polysulfides at the end of drying pried and the achievement of premium flavor qualities.


Asunto(s)
Hongos Shiitake , Proteína 1 Similar al Receptor de Interleucina-1 , Sulfuros , Calor
2.
Toxicology ; 478: 153293, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35995123

RESUMEN

Cassiae semen (CS), a traditional Chinese medicine, has various bioactivities in preclinical and clinical practice. Aurantio-obtusin (AO) is a major anthraquinone (AQ) ingredient derived from CS, and has drawn public concerns over its potential hepatotoxicity. We previously found that AO induces hepatic necroinflammation by activating NOD-like receptor protein 3 inflammasome signaling. However, the mechanisms contributing to AO-motivated hepatotoxicity remain unclear. Herein, we evaluated hepatotoxic effects of AO on three liver cell lines by molecular and biochemical analyses. We found that AO caused cell viability inhibition and biochemistry dysfunction in the liver cells. Furthermore, AO elevated reactive oxygen species (ROS), followed by mitochondrial dysfunction (decreases in mitochondrial membrane potential and adenosine triphosphate) and apoptosis (increased Caspase-3, Cleaved caspase-3, Cytochrome c and Bax expression, and decreased Bcl-2 expression). We also found that AO increased the lipid peroxidation (LPO) and enhanced ferroptosis by activating cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element-binding (CREB) pathway (increases in PKA, p-CREB, acyl-CoA synthetase long chain family member 4). Based on these results, we used an AOP framework to explore the mechanisms underlying AO's hepatotoxicity. It starts from molecular initiating event (ROS), and follows two critical toxicity pathways (i.e., mitochondrial dysfunction-mediated apoptosis and LPO-enhanced ferroptosis) over a series of key events (KEs) to the adverse outcome of hepatotoxicity. The results of an assessment confidence in the adverse outcome pathway (AOP) framework supported the evidence concordance in dose-response, temporal and incidence relationships between KEs in AO-induced hepatotoxicity. This study's findings offer a novel toxicity pathway network for AO-caused hepatotoxicity.


Asunto(s)
Rutas de Resultados Adversos , Enfermedad Hepática Inducida por Sustancias y Drogas , Antraquinonas/química , Antraquinonas/farmacología , Caspasa 3 , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Especies Reactivas de Oxígeno
3.
PLoS One ; 17(3): e0264720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35303006

RESUMEN

OBJECTIVE: Sijunzi decoction (SJZD) was used to treat patients with colorectal cancer (CRC) as an adjuvant method. The aim of the study was to investigate the therapeutic targets and pathways of SJZD towards the tumor microenvironment of CRC via network pharmacology and the ESTIMATE algorithm. METHODS: The ESTIMATE algorithm was used to calculate immune and stromal scores to predict the level of infiltrating immune and stromal cells. The active targets of SJZD were searched in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and UniProt database. The core targets were obtained by matching the differentially expressed genes in CRC tissues and the targets of SJZD. Then, GO, KEGG and validation in TCGA were carried out. RESULTS: According to the ESTIMATE algorithm and survival analysis, the median survival time of the low stromal score group was significantly higher than that of the high stromal score group (P = 0.018), while the patients showed no significant difference of OS between different immune groups (P = 0.19). A total of 929 genes were upregulated and 115 genes were downregulated between the stromal score groups (|logFC| > 2, adjusted P < 0.05); 357 genes were upregulated and 472 genes were downregulated between the immune score groups. The component-target network included 139 active components and 52 related targets. The core targets were HSPB1, SPP1, IGFBP3, and TGFB1, which were significantly associated with poor prognosis in TCGA validation. GO terms included the response to hypoxia, the extracellular space, protein binding and the TNF signaling pathway. Immunoreaction was the main enriched pathway identified by KEGG analysis. CONCLUSION: The core genes (HSPB1, SPP1, IGFBP3 and TGFB1) affected CRC development and prognosis by regulating hypoxia, protein binding and epithelial-mesenchymal transition in the extracellular matrix.


Asunto(s)
Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Algoritmos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Hipoxia/tratamiento farmacológico , Microambiente Tumoral/genética
4.
Toxicol Lett ; 354: 1-13, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718095

RESUMEN

Aurantio-obtusin (AO) is a major anthraquinone (AQ) compound derived from Cassiae semen (CS). Although pharmacological studies have shown that the CS extracts can serve as effective agents in preclinical and clinical practice, AQ-induced hepatotoxicity in humans has attracted widespread attention. To explore whether AO induces hepatotoxicity and its underlying mechanisms, we exposed larval zebrafish and mice to AO. We found that AO delayed yolk sac absorption, and increased liver area and inflammation in the larval zebrafish. This inflammation was manifested as an increase in liver neutrophils and the up-regulated mRNA expression of interleukin-6 (Il-6) and tumor necrosis factor-α (Tnf-α) in the larval zebrafish. Furthermore, a pharmacokinetics study showed that AO was quickly absorbed into the blood and rapidly metabolized in the mice. Of note, AO induced hepatotoxicity in a gender-dependent manner, characterized by liver dysfunction, increased hepatocyte necrosis with inflammatory infiltration, and up-regulated mRNAs of Il-6, Tnf-α and monocyte chemotactic protein 1(Mcp1) in the female mice after 28-day oral administration. It also highlighted that AO triggered NOD-like receptor protein (NLRP) signaling in the female mice, as evidenced by the increased NLRP3, Caspase-1, pro-IL-1ß, IL-1ß and IL-18. Finally, we found that AO led to a significant increase in potassium calcium-activated channel, subfamily N, member 4 (KCNN4) and reactive oxygen species (ROS) levels, along with decreased nuclear factor kappa B p65 (NF-κB p65), in the female mouse livers. In conclusion, AO induced hepatotoxicity by activating NLRP3 inflammasome signaling, at least in part, through increased KCNN4 and ROS production, and NF-κB inhibition.


Asunto(s)
Antraquinonas/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Inflamación/fisiopatología , Pez Cebra/metabolismo , Animales , Cassia/química , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/toxicidad , Femenino , Humanos , Larva/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos
5.
Drug Dev Ind Pharm ; 46(8): 1345-1353, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32643448

RESUMEN

PURPOSE: Huashi Baidu formula (HSBDF) was developed to treat the patients with severe COVID-19 in China. The purpose of this study was to explore its active compounds and demonstrate its mechanisms against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through network pharmacology and molecular docking. METHODS: All the components of HSBDF were retrieved from the pharmacology database of TCM system. The genes corresponding to the targets were retrieved using UniProt and GeneCards database. The herb-compound-target network was constructed by Cytoscape. The target protein-protein interaction network was built using STRING database. The core targets of HSBDF were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The main active compounds of HSBDF were docked with SARS-CoV-2 and angiotensin converting enzyme II (ACE2). RESULTS: Compound-target network mainly contained 178 compounds and 272 corresponding targets. Key targets contained MAPK3, MAPK8, TP53, CASP3, IL6, TNF, MAPK1, CCL2, PTGS2, etc. There were 522 GO items in GO enrichment analysis (p < .05) and 168 signaling pathways (p < .05) in KEGG, mainly including TNF signaling pathway, PI3K-Akt signaling pathway, NOD-like receptor signaling pathway, MAPK signaling pathway, and HIF-1 signaling pathway. The results of molecular docking showed that baicalein and quercetin were the top two compounds of HSBDF, which had high affinity with ACE2. CONCLUSION: Baicalein and quercetin in HSBDF may regulate multiple signaling pathways through ACE2, which might play a therapeutic role on COVID-19.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Simulación del Acoplamiento Molecular/métodos , Farmacología Clínica/métodos , Neumonía Viral/tratamiento farmacológico , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/química , Betacoronavirus/genética , COVID-19 , China , Bases de Datos Factuales , Ontología de Genes , Marcación de Gen , Genes Virales/efectos de los fármacos , Genes Virales/genética , Humanos , Medicina Tradicional China , Pandemias , Peptidil-Dipeptidasa A/efectos de los fármacos , Peptidil-Dipeptidasa A/genética , SARS-CoV-2 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA