Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492365

RESUMEN

BACKGROUND: Depression is a common mental illness characterised by abnormal and depressed emotions. Total paeony glycoside (TPG) is a naturally active saponin extracted from the traditional Chinese medicine Radix Paeoniae rubra. However, the antidepressant and neuroinflammatory effects of TPG have not been thoroughly studied. PURPOSE: To study the therapeutic potential of TGP in depression caused by neuronal injury and neuroinflammation and to explore the mechanism of TGP and the relationship between the NLRP3 inflammasome, pyroptosis, and autophagy. STUDY DESIGN: A chronic unpredictable mild stress (CUMS)-induced depression model and a cell model of corticosterone (CORT)-induced hippocampal neuron injury were established to evaluate the therapeutic effects of TPG. METHODS: The composition of TPG was analysed using high-performance liquid chromatography and mass spectrometry. The effects of TPG and fluoxetine on depression-like behaviour, neuronal injury, neuroinflammation, pyroptosis, and mitochondrial autophagy in the mice models were evaluated. RESULTS: TGP alleviated depression-like behaviours in mice and inhibited hippocampal neuronal apoptosis. The secretion of inflammatory cytokines was significantly reduced in CORT-induced hippocampal neuron cells and in the serum of a mouse model of CUMS-induced depression. In addition, TGP treatment reduced the levels of NLRP3 family pyrin structural domains, including NLRP3, pro-caspase-1, caspase-1, and IL-1ß, and the pyroptosis related proteins such as GSDMD-N. Importantly, TPG attenuated mitochondrial dysfunction, promoted the clearance of damaged mitochondria, and the activation of mitochondrial autophagy, which reduced ROS accumulation and NLRP3 inflammasome activation. An in-depth study observed that the regulatory effect of TPG on autophagy was attenuated by the autophagy inhibitor 3-methyladenine (3-MA) in vitro and in vivo. However, administration of the caspase-1 inhibitor Belnacasan (VX-765) successfully inhibited pyroptosis and showed a synergistic therapeutic effect with TPG. CONCLUSION: These results indicate that TPG can repair neuronal damage by activating autophagy, restoring mitochondrial function, and reducing inflammation-mediated pyroptosis, thereby playing an important role in the alleviation of neuroinflammation and depression. This study suggests new potential drugs and treatment strategies for neuroinflammation-related diseases and depression.


Asunto(s)
Antidepresivos , Autofagia , Depresión , Modelos Animales de Enfermedad , Glicósidos , Hipocampo , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Paeonia , Piroptosis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Autofagia/efectos de los fármacos , Antidepresivos/farmacología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Ratones , Masculino , Glicósidos/farmacología , Piroptosis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Depresión/tratamiento farmacológico , Paeonia/química , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología
2.
Front Vet Sci ; 11: 1335765, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496306

RESUMEN

Microorganisms inhabit the gastrointestinal tract of ruminants and regulate body metabolism by maintaining intestinal health. The state of gastrointestinal health is influenced not only by the macro-level factors of optimal development and the physiological structure integrity but also by the delicate equilibrium between the intestinal flora and immune status at the micro-level. Abrupt weaning in young ruminants causes incomplete development of the intestinal tract resulting in an unstable and unformed microbiota. Abrupt weaning also induced damages to the microecological homeostasis of the intestinal tract, resulting in the intestinal infections and diseases, such as diarrhea. Recently, nutritional and functional yeast culture has been researched to tackle these problems. Herein, we summarized current known interactions between intestinal microorganisms and the body of young ruminants, then we discussed the regulatory effects of using yeast culture as a feed supplement. Yeast culture is a microecological preparation that contains yeast, enriched with yeast metabolites and other nutrient-active components, including ß-glucan, mannan, digestive enzymes, amino acids, minerals, vitamins, and some other unknown growth factors. It stimulates the proliferation of intestinal mucosal epithelial cells and the reproduction of intestinal microorganisms by providing special nutrient substrates to support the intestinal function. Additionally, the ß-glucan and mannan effectively stimulate intestinal mucosal immunity, promote immune response, activate macrophages, and increase acid phosphatase levels, thereby improving the body's resistance to several disease. The incorporation of yeast culture into young ruminants' diet significantly alleviated the damage caused by weaning stress to the gastrointestinal tract which also acts an effective strategy to promote the balance of intestinal flora, development of intestinal tissue, and establishment of mucosal immune system. Our review provides a theoretical basis for the application of yeast culture in the diet of young ruminants.

3.
Food Funct ; 15(5): 2587-2603, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38353975

RESUMEN

Deer sinew as a by-product has high collagen and nutritional value. This study focuses on its hydrolysate being used as a calcium carrier to develop functional foods. The chelation mechanism was analyzed by SEM, EDS, UV-vis, FTIR, and fluorescence spectroscopy and zeta potential analysis after using peptide-sequenced deer sinew peptides for chelation with calcium ions. The results showed that the chelation of deer sinew peptides with calcium ions occurs mainly at the O and N atoms of carboxyl, amino and amide bonds. In vitro and in vivo studies revealed that deer sinew peptide-calcium chelate (DSPs-Ca) promoted the proliferation of MC3T3-E1 cells without toxic side effects and increased the alkaline phosphatase activity. The DSPs-Ca group improved the bone microstructure induced by low calcium, as well as up-regulated the expression of genes responsible for calcium uptake in the kidneys, as evidenced by serum markers, bone sections, bone parameters, and gene expression analyses in low-calcium-fed mice. From the above, it can be concluded that DSPs-Ca is expected to be a calcium supplement food for promoting bone health.


Asunto(s)
Calcio , Ciervos , Ratones , Animales , Calcio/metabolismo , Ciervos/metabolismo , Proliferación Celular , Calcio de la Dieta/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Iones/metabolismo , Iones/farmacología , Osteoblastos
4.
Heliyon ; 10(2): e24782, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312676

RESUMEN

As a traditional Chinese herbal medicine, Cornu Cervi Degelatinatum (CCD) has the effect of warming the kidney to support yang, astringing, and stopping bleeding, and is used for spleen kidney yang deficient (SKYD). This experiment was to investigate the therapeutic effects of different processes of CCD on SKYD type ulcerative colitis (UC) rats and to explore its impact on the intestinal flora of rats. METHODS: ELISA was used to study the anti-inflammatory activity of Cornu Cervi Degelatinatum processed with water (WCCD) and Cornu Cervi Degelatinatum processed with vinegar (VCCD). 16SrRNA and transcriptome sequencing were used to detect the composition of rat intestinal flora and gene expression; RT-PCR and Western blot were used to verify the role of WCCD and VCCD in treating UC. RESULTS: WCCD and VCCD have therapeutic effects on UC, could reduce tissue damage. VCCD performed better in improving Bacteroidetes/Firmicutes ratios and species evenness and abundance; performed better in increasing the quantity of lactobacillus. VCCD simultaneously inhibit the intestinal inflammatory response through NCK2, PAK4, and JNK signaling pathways. CONCLUSIONS: WCCD and VCCD play a therapeutic role in UC by regulating the proportion of different flora in the intestinal flora. VCCD regulates the intestinal flora and inflammatory response by interfering with the NCK2, PAK4 and JNK signaling pathways.

5.
J Ethnopharmacol ; 321: 117508, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065351

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Antler glue is a classic medicinal to enhance sexual function in traditional Chinese medicine (TCM), which was first recorded in Shen Nong Ben Cao Jing (Shennong's Classic of the Materia Medica). Vinegar-processing is a classic method of processing traditional Chinese medicine. The method of preparing antler glue by boiling antlers in vinegar and then concentrating them is recorded in Lei Gong Pao Zhi Lun (Master Lei's Discourse on Medicinal Processing). In modern times, the typical processing method of antler glue is water extraction and concentration. However, it is not clear whether there is a difference in the effect of these two processing methods on the chemical composition and pharmacological activity of antler glue. AIM OF THE STUDY: The Chinese Pharmacopoeia (2020) records that the processing method of antler glue is water extraction and concentration. But Lei Gong Pao Zhi Lun differs in Chinese Pharmacopoeia (2020), which records the processing method of vinegar extraction and concentration. The effect of the two processing methods on antler glue's chemical composition and pharmacological activity is unknown. So this study aimed to elucidate the difference between different processing methods on the chemical composition and the treatment effect on oligoasthenospermia of antler glue. MATERIALS AND METHODS: So the automatic amino acid analyzer is used to determine the amino acid content of two different processing methods of antler glue. Proteomics was performed to detect the protein components of two different processing methods of antler glue and analyze them. Cyclophosphamide-induced mice models of oligoasthenospermia were used to study the different pharmacological effects of antler glue in two different processing methods. An automatic sperm analyzer observed the quantity and quality of sperm in mice epididymis. Serum sex hormone testosterone (T), luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels in mice were tested using the enzyme-linked immunosorbent assay (ELISA) kits. Hematoxylin-eosin (H&E) staining was used to analyze pathological alterations in mouse testicular tissue. The transcriptome has been used to reveal the potential mechanism of antler glue in treating oligoasthenospermia. Mitochondrial complex activity assay kits were used to assay the activity of mitochondrial respiratory chain complex I-V in mouse testicular tissue. Western blot was used to determine the expression of related proteins in mouse testicular tissue. RESULTS: Vinegar-processing can increase the alanine, proline, and glycine content in antler glue, reduce the length of protein peptides in antler glue, and produce a variety of unique proteins. Vinegar-processed antler glue (VAG) increased sperm density, sperm survival, sperm viability, and serum sex hormone levels in oligozoospermic mice. It reversed testicular damage caused by cyclophosphamide, and the effects were differently superior to those of water-processed antler glue (WAG). In addition, transcriptomics and related experiments have shown that VAG can increase the expression of Ndufa2, Uqcr11, Cox6b1, and Atp5i genes and proteins in mouse testis, thus promoting adenosine diphosphate (ATP) synthesis by increasing the activity of mitochondrial respiratory chain complexes I, III, IV and V. By promoting the oxidative phosphorylation process to produce more ATP, VAG can achieve the therapeutic effect of oligoasthenospermia. CONCLUSION: Vinegar-processing method can increase the content of active ingredients in antler glue. VAG increases ATP levels in the testes by promoting the process of oxidative phosphorylation to treat oligozoospermia.


Asunto(s)
Cuernos de Venado , Oligospermia , Humanos , Ratones , Masculino , Animales , Cuernos de Venado/química , Ácido Acético , Semen/química , Proteínas , Hormonas Esteroides Gonadales , Aminoácidos , Ciclofosfamida , Adenosina Trifosfato
6.
Phytother Res ; 38(1): 231-240, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37857401

RESUMEN

To explore the antidepressant effects and targets of atractylenolide I (ATR) through a network pharmacological approach. Relevant targets of ATR and depression analyzed by network pharmacology were scored (identifying 5-HT2A targets). Through elevated plus maze, open field, tail suspension, and forced swimming tests, the behavioral changes of mice with depression (chronic unpredictable mild stress [CUMS]) were examined, and the levels of neurotransmitters including serotonin, dopamine, and norepinephrine (5-HT, DA, and NE) were determined. The binding of ATR to 5-HT2A was verified by small molecular-protein docking. ATR improved the behaviors of CUMS mice, elevated their levels of neurotransmitters 5-HT, DA, and NE, and exerted a protective effect on their nerve cell injury. After 5-HT2A knockout, ATR failed to further improve the CUMS behaviors. According to the results of small molecular-protein docking and network pharmacological analysis, ATR acted as an inhibitor by binding to 5-HT2A. ATR can improve the behaviors and modulate the neurotransmitters of CUMS mice by targeting 5-HT2A.


Asunto(s)
Depresión , Lactonas , Serotonina , Sesquiterpenos , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Serotonina/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Neurotransmisores/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Hipocampo , Conducta Animal
7.
J Biochem Mol Toxicol ; 38(1): e23544, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37815058

RESUMEN

To investigate the key molecular mechanisms of palmatine for the treatment of neuroinflammation through modulation of a pathway using molecular docking, molecular dynamics (MD) simulation combined with network pharmacology, and animal experiments. Five alkaloid components were obtained from the traditional Chinese medicine Huangteng through literature mining. Molecular docking and MD simulation with acetylcholinesterase were used to screen palmatine. At the animal level, mice were injected with LPS intracerebrally to cause a neuroinflammatory model, and the Morris water maze experiment was performed to examine the learning memory of mice. Anxiety levels were tested using the autonomous activity behavior experiment with the open field and elevated behavior experiments. HE staining and Niss staining were performed on brain tissue sections to observe morphological lesions and apoptosis; serum was examined for inflammatory factors TNF-α, IL-6, and IL-1ß; Western blot was performed to detect the protein expression. The expression of PI3K/AKT/NFkB signaling pathway-related proteins was examined by Western blot. The results of network pharmacology showed that the screening of palmatine activation containing the PI3K/Akt/NFkB signaling pathway exerts antineuroinflammatory effects. Results from behavioral experiments showed that Pal enhanced learning memory in model mice, improved anxiety behavior, and significantly improved brain damage caused by neuroinflammation. The results of HE staining and Niss staining of brain tissue sections showed that palmatine could alleviate morphological lesions and nucleus damage in brain tissue. Palmatine improved the levels of serum inflammatory factors TNF-α, IL-6, and IL-1ß. SOD, MDA, CAT, ACH, and ACHE in the hippocampus were improved. Western blot results showed that palmatine administration ameliorated LPS-induced neuroinflammation through the PI3K/Akt/NFkB pathway.


Asunto(s)
Alcaloides de Berberina , FN-kappa B , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Lipopolisacáridos/toxicidad , Factor de Necrosis Tumoral alfa/metabolismo , Enfermedades Neuroinflamatorias , Interleucina-6 , Acetilcolinesterasa , Simulación del Acoplamiento Molecular
8.
J Ethnopharmacol ; 319(Pt 3): 117284, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37844741

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Sanghuangporus vaninii (S. vaninii), as a traditional large medicinal fungus, has a history of more than 2000 years in Chinese history and has been widely used to treat female diseases such as vaginal discharge, amenorrhea, and uterine bleeding, and recent pharmacological studies have also found that it has antioxidant, anti-inflammatory, and anti-tumor physiological activity, which has received more and more attention. AIM OF THE STUDY: The objective was to evaluate cytotoxicity and the acute, subacute toxicity, and in vitro antioxidant activity of S. vaninii crude polysaccharide (SVP). MATERIALS AND METHODS: The monosaccharide composition of SVP was determined by HPLC (high-performance liquid chromatography). The cytotoxicity of different concentrations of SVP on three types of cells (HT-22, Kupffer macrophages, HEK293) was assessed using CCk-8. The acute toxicity in vivo was evaluated for 14 days after the administration of SVP (2500,5000, or 10,000 mg/mL). For the evaluation of subacute toxicity, mice were daily treated for 28 days with SVP (2500,5000, or 10,000 mg/mL). In addition, DPPH, hydroxyl radical, and superoxide anion radical were used to evaluate the in vitro antioxidant activity of SVP. RESULTS: SVP was not toxic in all three cell lines tested. In vitro antioxidant tests on the extracts showed that SVP possessed a strong antioxidant capacity in vitro. In the acute study, the no-observed-adverse-effect level (NOAEL) in male and female rats was 10,000 mg/kg body weight. There were also no deaths or severe toxicity associated with SVP in subacute studies. However, SVP treatment had a decreasing effect on body weight in mice of both sexes (2500, 5000, and 10000 mg/kg). At doses (5000 and 10,000 mg/kg), SVP had a reduced effect on food intake in both male and female mice. In addition, there were significant effects on organ coefficients of the liver, lung, and kidney. Hematological analysis showed significantly lower LYM (%) values in mice of both sexes, with significantly lower MCH (pg) values obtained in males (5000 mg/kg and 10000 mg/kg) and higher GRAN (%) values in females. In addition, the RDW-SD (fL) values were significantly lower in the male mice given the highest dose. Biochemical tests showed that there were no significant changes in ALT, AST, TP, and Cr levels after SVP treatment. In histopathological analysis, mild liver toxicity was observed in both female mice treated with 10,000 mg/kg SVP. CONCLUSION: The extract of SVP showed a predominance of polysaccharide compounds, with non-toxic action in vivo. Our approach revealed SVP on the chemical composition and suggests a high margin of safety in the popular use of medicinal fungi. In conclusion, our results suggest that SVP is safe, and can be used as health care products and food.


Asunto(s)
Antioxidantes , Extractos Vegetales , Ratas , Ratones , Humanos , Masculino , Femenino , Animales , Antioxidantes/toxicidad , Extractos Vegetales/toxicidad , Células HEK293 , Pruebas de Toxicidad Aguda , Peso Corporal
9.
Synth Syst Biotechnol ; 8(4): 749-756, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38090379

RESUMEN

Medicarpin is an important bioactive compound with multiple medicinal activities, including anti-tumor, anti-osteoporosis, and anti-bacterial effects. Medicarpin is associated with pterocarpans derived from medicinal plants, such as Sophora japonica, Glycyrrhiza uralensis Fisch., and Glycyrrhiza glabra L. However, these medicinal plants contain only low amounts of medicarpin. Moreover, the planting area for medicarpin-producing plants is limited; consequently, the current medicarpin supply cannot meet the high demands of medicinal markets. In this study, eight key genes involved in medicarpin biosynthesis were identified using comparative transcriptome and bioinformatic analyses. In vitro and in vivo enzymatic reaction confirmed the catalytic functions of candidate enzymes responsible for the biosynthesis of medicarpin and medicarpin intermediates. Further engineering of these genes in Saccharomyces cerevisiae achieved the heterologous biosynthesis of medicarpin using liquiritigenin as a substrate, with a final medicarpin yield of 0.82 ± 0.18 mg/L. By increasing the gene copy numbers of vestitone reductase (VR) and pterocarpan synthase (PTS), the final medicarpin yield was increased to 2.05 ± 0.72 mg/L. This study provides a solid foundation for the economic and sustainable production of medicarpin through a synthetic biology strategy.

10.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37958950

RESUMEN

In recent years, the phenomenon of acute poisoning and organ damage caused by organophosphorus pesticides (OPs) has been a frequent occurrence. Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides. The main active components of ginseng stems and leaves are total ginseng stem-and-leaf saponins (GSLSs), which have various biological effects, including anti-inflammatory, antioxidant and anti-tumor activities. We speculate that these could have great potential in the treatment of severe diseases and the relief of organophosphorus-pesticide-induced side effects; however, their mechanism of action is still unknown. At present, our work aims to evaluate the effects of GSLSs on the antioxidation of CPF in vivo and in vitro and their potential pharmacological mechanisms. Mice treated with CPF (5 mg/kg) showed severe intestinal mucosal injury, an elevated diamine oxidase (DAO) index, the decreased expression of occlusive protein-1 (ZO-1) and occlusive protein, an impaired intestinal mucosal oxidation system and intestinal villi relaxation. In addition, chlorpyrifos exposure significantly increased the contents of the inflammatory factor TNF-α and the oxidative-stress-related indicators superoxide dismutase (SOD), catalase (CAT), glutathione SH (GSH), glutathione peroxidase (GSH-PX), reactive oxygen species (ROS) and total antioxidant capacity (T-AOC); elevated the level of lipid peroxide malondialdehyde (MDA); reversed the expression of Bax and caspase; and activated NF-κB-related proteins. Interestingly, GSLS supplementation at doses of 100 and 200 mg/kg significantly reversed these changes after treatment. Similar results were observed in cultured RAW264.7 cells. Using flow cytometry, Hoechst staining showed that GSLSs (30 µg/mL, 60 µg/mL) could improve the cell injury and apoptosis caused by CPF and reduce the accumulation of ROS in cells. In conclusion, GSLSs play a protective role against CPF-induced enterotoxicity by inhibiting NF-κB-mediated apoptosis and alleviating oxidative stress and inflammation.


Asunto(s)
Cloropirifos , Panax , Plaguicidas , Saponinas , Ratones , Animales , Cloropirifos/toxicidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo , Panax/metabolismo , Saponinas/farmacología , Compuestos Organofosforados/farmacología , Plaguicidas/farmacología , Estrés Oxidativo , Glutatión/metabolismo , Apoptosis , Hojas de la Planta/metabolismo
11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(10): 1225-1229, 2023 Oct 15.
Artículo en Chino | MEDLINE | ID: mdl-37848317

RESUMEN

Objective: To compare the effectiveness of subtalar arthroereisis (STA) combined with modified Kidner procedure versus STA alone in the treatment of flexible flatfoot combined with painful accessory navicular bone in children. Methods: The clinical data of 33 children with flexible flatfoot combined with painful accessory navicular bone who were admitted between August 2018 and August 2021 and met the selection criteria were retrospectively analyzed. They were divided into a combination group (17 cases, treated by STA combined with modified Kidner procedure) and a control group (16 cases, treated by STA alone) according to the surgical methods. There was no significant difference in baseline data between the two groups ( P>0.05), such as gender, age, affected side of the foot, disease duration, and preoperative visual analogue scale (VAS) score, American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot score, talus-first metatarsal angle (T1MT), talus-second metatarsal angle (T2MT), talonavicular coverage angle (TCA), talus first plantar angle (Meary angle), calcaneal inclination angle (Pitch angle), and heel valgus angle (HV). The operation time, incision length, intraoperative blood loss, number of intraoperative fluoroscopies, and perioperative complications were recorded in both groups. The anteroposterior, lateral, and calcaneal axial X-ray films for the affected feet were taken regularly, and T1MT, T2MT, TCA, Meary angle, Pitch angle, and HV were measured. The VAS score, AOFAS ankle-hindfoot score were used to evaluate pain and functional recovery before and after operation. Results: Surgeries in both groups were successfully performed without surgical complication such as vascular, nerve, or tendon injuries. Less operation time, shorter incision length, less intraoperative blood loss, and fewer intraoperative fluoroscopies were found in the control group than in the combination group ( P<0.05). One case in the combination group had partial necrosis of the skin at the edge of the incision, which healed after the dressing change and infrared light therapy, and the rest of the incisions healed by first intention. All children were followed up 12-36 months, with a mean of 19.6 months. At last follow-up, VAS score and AOFAS ankle-hindfoot score significantly improved in both groups when compared with preoperative ones ( P<0.05), and the differences of these scores between before and after operation improved more significantly in the combination group than in the control group ( P<0.05). Imaging results showed that the T1MT, T2MT, TCA, Meary angle, and HV significantly improved in both groups at last follow-up when compared with preoperative ones ( P<0.05), and the Pitch angle had no significant difference when compared with preoperative one ( P>0.05). But there was no significant difference in the difference of these indicators between before and after operation between the two groups ( P>0.05). Conclusion: Both procedures are effective in the treatment of flexible flatfoot children with painful accessory navicular bone. STA has the advantage of minimally invasive, while STA combined with modified Kidner procedure has better effectiveness.


Asunto(s)
Pie Plano , Astrágalo , Humanos , Niño , Pie Plano/cirugía , Pérdida de Sangre Quirúrgica , Estudios Retrospectivos , Resultado del Tratamiento , Osteotomía/métodos , Dolor
12.
Aging (Albany NY) ; 15(12): 5290-5303, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37367832

RESUMEN

The Glycyrrhiza uralensis Fisch. is a common traditional Chinese medicine. However, its aerial part is currently not widely studied and used. Therefore, we aimed to investigate the neuroprotective effects of total flavonoids in aerial stems and leaves of Glycyrrhiza uralensis Fisch. (GSF) by an in vitro LPS-induced HT-22 cell model and an in vivo Caenorhabditis elegans (C. elegans) model. In this study, cell apoptosis was evaluated by CCK-8 and Hoechst 33258 staining in LPS-induced HT-22 cells. Meanwhile, ROS level, mitochondrial membrane potential (MMP), and Ca2+ level were detected by the flow cytometer. In vivo, C. elegans was also investigated the effect of GSF on lifespan, spawning, and paralysis. Moreover, the survival of C. elegans to oxidative stimuli (juglone and H2O2), and the nuclear translocation of DAF-16 and SKN-1 were evaluated. The results showed that GSF could inhibit LPS-induced HT-22 cell apoptosis. Moreover, GSF decreased the levels of ROS, MMP, Ca2+, and malondialdehyde (MDA) and increased the activities of SOD and CAT in HT-22 cells. Furthermore, GSF did not affect the lifespan and laying of eggs of C. elegans N2. However, it delayed paralysis in C. elegans CL4176 in a dose-dependent manner. Meanwhile, GSF increased the survival rate of C. elegans CL2006 after juglone and H2O2 treatment, increased SOD and CAT, and decreased MDA levels. Importantly, GSF promoted the nuclear translocation of DAF-16 and SKN-1 in C. elegans TG356 and LC333, respectively. Taken together, GSF can play a protective role in neuronal cells by inhibiting oxidative stress.


Asunto(s)
Proteínas de Caenorhabditis elegans , Glycyrrhiza uralensis , Fármacos Neuroprotectores , Animales , Caenorhabditis elegans/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Glycyrrhiza uralensis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Peróxido de Hidrógeno/farmacología , Lipopolisacáridos/farmacología , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Hojas de la Planta , Parálisis
13.
J Biochem Mol Toxicol ; 37(6): e23345, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37050869

RESUMEN

The role of polysaccharide components in the immune system, especially immunomodulatory effects, has received increasing attention. In this context, in this study, network pharmacology was adopted to explore the hypothesis of a multitarget mechanism for immune modulation by Chrysalis polysaccharides. A total of 174 common targets were screened by network pharmacology, with the main ones being TNF, MAPK3, CASP3, VEGFA, and STAT3, mostly enriched in the Toll pathway. The molecular docking results showed that the polysaccharide fraction of Chrysalis binds well to TNF proteins. Besides, in vitro cellular assays were performed to verify the ability of Chrysalis polysaccharides to regulate macrophage polarization and to screen for macrophage surface receptors. Furthermore, in vivo experiments were conducted to prove the activation of TLR4 and TNF-α protein expression in mice by Chrysalis polysaccharide.


Asunto(s)
Cordyceps , Medicamentos Herbarios Chinos , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Simulación del Acoplamiento Molecular , Receptor Toll-Like 4 , Farmacología en Red , Polisacáridos/farmacología
14.
Aging (Albany NY) ; 14(22): 8982-8999, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36374217

RESUMEN

Chlorpyrifos (CPF) is a class of toxic compounds which has been widely used in agriculture that can cause multi-organ damage to the liver, kidneys, testes, and nervous system. Currently, most studies on ginseng have concentrated on the roots and rhizomes, and less research has been conducted on the above-ground parts. Our laboratory found that ginseng stem and leaf total saponin (GSLS) features strong antioxidant activity. In this experiment, we selected different concentrations of CPF to induce hippocampal neuronal cell injury model in mice, conducted a cell survival screening test, and also selected appropriate concentrations of CPF to induce brain injury model in mice. CCK-8, flow cytometry, Elisa, Hoechst 33258 staining, Annexin V-FITC/PI staining, HE staining, Morris water maze, and qRT-PCR were adopted for detecting the effects of GSLS treatment on CPF-induced cell viability, mitochondrial membrane potential, reactive oxygen species (ROS) levels, Ca2+ concentration and GSLS treatment on CPF-induced brain injury and related signaling in mice, respectively. The effects of GSLS treatment on CPF-induced brain injury and the related signaling pathways in mice were examined. The results showed that GSLS at 60 µg/ml and 125 µg/ml concentrations elevated the viability of CPF-induced HT22 cells, increased mitochondrial membrane potential, depleted ROS, decreased Ca2+ concentration, and decreased apoptosis rate. Meanwhile, GSLS treatment significantly reduced CPF-induced escape latency in mice, elevated the number of entries into the plateau and effective area, increased the effective area and target quadrant residence time, as well as improved the pathological damage of mouse hippocampal neurons. The results of mouse brain sections demonstrated that GSLS treatment significantly increased SOD and CAT activities and lowered MDA accumulation in CPF-induced mice. qRT-PCR revealed that PTEN mRNA expression was significantly decreased with PI3K and AKT expression being significantly increased in GSLS-treated CPF-induced mice. Thus, the obtained results indicate that GSLS can effectively antagonize CPF-induced brain toxicity in mice through regulating PTEN/PI3K/AKT pathway.


Asunto(s)
Lesiones Encefálicas , Cloropirifos , Panax , Saponinas , Animales , Ratones , Apoptosis , Encéfalo/metabolismo , Cloropirifos/toxicidad , Panax/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Hojas de la Planta/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saponinas/farmacología
15.
Aging (Albany NY) ; 15(3): 675-688, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36152060

RESUMEN

Chlorpyrifos (CPF), as an extensively used organophosphorus pesticide, often remains on food surfaces or contaminates water sources. CPF can cause many toxic effects on human production and life. As an additional product of non-medicinal parts of ginseng, the pharmacological activity of ginseng stem and leaf total saponin (GSLS) has been verified and applied in recent years. This study aimed to evaluate the protective effect of GSLS on CPF-induced liver damage in mice. Experimental results in vivo demonstrate that GSLS can reduce the accumulation of oxidation product MDA by relieving CPF-induced liver function indicators in mice and enhancing the antioxidant enzyme SOD and CAT activities of mice. With the decrease in mRNA expression of BAX, NF-KB, and TIMP in liver tissues, the mRNA expression of Nrf-2, HO-1, and XIAP increased. Through anti-inflammatory, antioxidant, anti-inflammatory and other effects, cpf-induced hepatotoxicity can be alleviated by GSLS. In vitro experiments have proved that GSLS can show the ability to scavenge DPPH free radicals and hydroxyl radicals. In addition, GSLS can alleviate chlorpyrifos-induced ROS accumulation in L02 cells, alleviating cytokinetic potential reduction. In summary, by fighting oxidative stress, GSLS can alleviate liver damage caused by CPF.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Cloropirifos , Ginsenósidos , Insecticidas , Panax , Plaguicidas , Saponinas , Ratones , Humanos , Animales , Cloropirifos/toxicidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Insecticidas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ginsenósidos/farmacología , Saponinas/farmacología , Panax/metabolismo , Compuestos Organofosforados/farmacología , Plaguicidas/farmacología , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , ARN Mensajero/metabolismo
16.
Pharm Biol ; 60(1): 1436-1448, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35938494

RESUMEN

CONTEXT: Fibraurea recisa Pierre. (Menispermaceae) (FR) is a traditional Chinese medicine known as "Huangteng." The total alkaloids of FR (AFR) are the main active ingredients. However, the pharmacological effects of AFR in the treatment of depression have not been reported. OBJECTIVES: This study investigates the antidepressant effects of AFR by network pharmacology and verification experiments. MATERIALS AND METHODS: Compound-Target-Pathway (C-P-T) network of FR and depression was constructed through network pharmacology. In vitro, HT-22 cells were treated with corticosterone (CORT) solution (0.35 mg/mL), then AFR (0.05 mg/mL) solution and inhibitor AZD6244 (14 µM/mL) or BAY11-7082 (10 µM/mL) were added, respectively. The cell viability was detected by CCK-8. In vivo, C57BL/6 mice were divided into 5 groups, namely the normal group, the CUMS group, the AFR (400 mg/kg) group, and the 2 groups that were simultaneously administered the inhibitory group AZD6244 (8 mg/kg) and BAY11-7082 (5 mg/kg). Western blotting was used to assess the expression level of the proteins. RESULTS: AFR could protect HT-22 cells from CORT-induced damage and increase the cell viability from 49.12 ± 3.4% to 87.26 ± 1.5%. Moreover, AFR significantly increased the levels of BDNF (1.3, 1.4-fold), p-ERK (1.4, 1.2-fold) and p-CERB (1.6, 1.3-fold), and decreased the levels of NLRP3 (11.3%, 31.6%), ASC (19.2%, 34.2%) and caspase-1 (18.0%, 27.6%) in HT-22 cells and the hippocampus, respectively. DISCUSSION AND CONCLUSIONS: AFR can improve depressive-like behaviours and can develop drugs for depression treatment. Further studies are needed to validate its potential in clinical medicine.


Asunto(s)
Alcaloides , Menispermaceae , Alcaloides/metabolismo , Alcaloides/farmacología , Animales , Antidepresivos/farmacología , Apoptosis , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corticosterona , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo , Menispermaceae/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Psicológico/tratamiento farmacológico
17.
Food Chem ; 367: 130724, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34352691

RESUMEN

For the first time, electromembrane extraction (EME) combined LC-MS/MS was applied to extract and determine α-solanine and α-chaconine in different potato tissues using NPOE containing 20% (v/v) DEHP as supported liquid membrane (SLM). Under the optimal conditions, the proposed EME-LC-MS/MS method was evaluated using spiked fresh potato peel sample. The linear range for α-solanine and α-chaconine was 5-1000 ng mL-1 (R2 > 0.9991), with LOD and LOQ of 1.2-1.5 ng mL-1 and 4.1-5.2 ng mL-1, respectively. Repeatability for α-solanine and α-chaconine at three concentration levels was satisfactory (<4.9%), and recoveries ranged from 73% to 106%. Finally, the EME-LC-MS/MS method has been successfully employed to determine α-solanine and α-chaconine in sprouted potato peel and tuber samples, indicating that EME exhibited high selectivity and efficient sample clean-up capability. Consequently, EME showed great potential for extraction and purification of toxic and bioactive basic compounds from complex plant tissues.


Asunto(s)
Solanina , Solanum tuberosum , Cromatografía Liquida , Espectrometría de Masas en Tándem
18.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3678-3686, 2021 Jul.
Artículo en Chino | MEDLINE | ID: mdl-34402292

RESUMEN

This study aimed to investigate the antidepressant effects of total alkaloids of Fibraurea recisa in HT22 cells damaged by corticosterone (CORT) in vitro and in a mouse model of chronic unpredictable mild stress (CUMS) as well as the underlying mechanisms.In cellular experiments,the viability of CORT-damaged HT22 cells was detected using cell counting kit-8 (CCK-8),and the cell apoptosis was detected by Hoechst 33258 staining.In animal experiments,C57BL/6N mice were randomly divided into the control group,model group,low (100 mg·kg~(-1)),medium (200 mg·kg~(-1)) and high (400 mg·kg~(-1))-dose of total alkaloids of F.recisa groups,and positive control group.After 21 days of CUMS exposure,their depressive behaviors were observed in behavioral and Morris water maze tests.The serum levels of 5-hydroxytryptamine (5-HT),dopamine (DA),and norepinephrine (NE) were assessed by ELISA.The expression levels of apoptosis-related proteins Bcl-2,Bax and cleaved caspase-3 in HT22 cells and mouse hippocampus were detected by Western blot.The results suggested that total alkaloids of F.recisa alleviated the damage of HT22 cells induced by CORT in a dose-dependent manner.The Hoechst 33258 staining uncovered that total alkaloids of F.recisa better reduced the blue spots and inhibited cell apoptosis.The results of animal experiments showed that total alkaloids of F.recisa significantly improved the depression-like behaviors of mice and increased the serum levels of 5-HT,DA and NE as compared with those in the model group.The Western blot assays revealed a significant up-regulation of Bcl-2 protein expression,but an obvious reduction in Bax and cleaved caspase-3protein expression in the total alkaloids of F.recisa group.In conclusion,total alkaloids of F.recisa inhibited depression possibly by regulating the apoptosis-related protein expression or elevating the monoamine neurotransmitter levels in the brain.


Asunto(s)
Alcaloides , Depresión , Alcaloides/farmacología , Animales , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Hipocampo , Ratones , Ratones Endogámicos C57BL , Estrés Psicológico
19.
Bioresour Technol ; 340: 125712, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34426242

RESUMEN

Stable nitritation is the major challenge for short-cut nitrogen removal from municipal wastewater. This paper demonstrated a rapid achievement of partial nitrification (PN) in an enhanced biological phosphorus removal (EBPR) reactor treating domestic wastewater. Polyphosphate accumulating organisms (PAOs) were enriched operated at a short aerobic HRT (2.0 h) and SRT (10 d), with satisfactory phosphorus removal efficiency (95.9%). Both of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were elutriated simultaneously. Interestingly, AOB recovered much faster than NOB by a subsequent extension of aerobic HRT and SRT, resulting in a rapid development of PN within 15 days. Ammonia oxidation rates of AOB significantly increased by 44.2%, facilitating a high nitrite accumulation rate (NAR) of 95.8%. Genus Tetrasphaera, Halomonas, Paracoccus and Candidatus_Accumulibacter belonging to PAOs accounted for 4.6%. The proliferation of heterotrophs, typically as PAOs, maximized the microbial competition against NOB by favoring AOB activity and synergy with functional bacteria.


Asunto(s)
Nitrificación , Fósforo , Reactores Biológicos , Proliferación Celular , Interacciones Microbianas , Aguas del Alcantarillado , Aguas Residuales
20.
Molecules ; 26(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804230

RESUMEN

The fruit of Lycium barbarum L. (goji berry) is used as traditional Chinese medicine, and has the functions of immune regulation, anti-tumor, neuroprotection, anti-diabetes, and anti-fatigue. One of the main bioactive components is L. barbarum polysaccharide (LBP). Nowadays, LBP is widely used in the health market, and it is extracted from the fruit of L. barbarum. The planting of L. barbarum needs large amounts of fields, and it takes one year to harvest the goji berry. The efficiency of natural LBP production is low, and the LBP quality is not the same at different places. Goji berry-derived LBP cannot satisfy the growing market demands. Engineered Saccharomyces cerevisiae has been used for the biosynthesis of some plant natural products. Recovery of LBP biosynthetic pathway in L. barbarum and expression of them in engineered S. cerevisiae might lead to the yeast LBP production. However, information on LBP biosynthetic pathways and the related key enzymes of L. barbarum is still limited. In this review, we summarized current studies about LBP biosynthetic pathway and proposed the strategies to recover key enzymes for LBP biosynthesis. Moreover, the potential application of synthetic biology strategies to produce LBP using engineered S. cerevisiae was discussed.


Asunto(s)
Medicamentos Herbarios Chinos/metabolismo , Lycium/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Vías Biosintéticas/fisiología , Fitoterapia/métodos , Biología Sintética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA