Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Funct ; 12(8): 3680-3691, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33900317

RESUMEN

Some polyphenols have been reported to modulate the expression of several genes related to lipid metabolism and insulin signaling, ameliorating metabolic disorders. We investigated the potential for the polyphenols of two varieties of grumixama, the purple fruit rich in anthocyanins and the yellow fruit, both also rich in ellagitannins, to attenuate obesity-associated metabolic disorders. Mice were fed a high fat and high sucrose diet, supplemented daily with yellow and purple extracts (200 mg per kg of body weight) for eight weeks. Purple grumixama supplementation was found to decrease body weight gain, improve insulin sensitivity and glucose-induced hyperinsulinemia, and reduce hepatic triglyceride accumulation. A decrease in intrahepatic lipids in mice treated with the purple grumixama extract was associated with lipid metabolism modulation by the PPAR signaling pathway. LPL, ApoE, and LDLr were found to be down-regulated, while Acox1 and ApoB were found to be upregulated. Some of these genes were also modulated by the yellow extract. In addition, both extracts decreased oGTT and plasma LPS. The results were associated with the presence of phenolic acids and urolithins. In conclusion, most likely the anthocyanins from the purple grumixama phenolic extract is responsible for reducing obesity and insulin resistance.


Asunto(s)
Antocianinas/administración & dosificación , Eugenia , Extractos Vegetales/administración & dosificación , Animales , Antocianinas/farmacología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Fitoterapia , Extractos Vegetales/farmacología
2.
Int J Vitam Nutr Res ; 91(5-6): 461-468, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32138619

RESUMEN

Dairy beverages containing emulsified linseed oil is a suitable vehicle for delivering polyunsaturated fatty acids to consumers. However, these beverages are prone to oxidation. The purpose of this study was to evaluate the effect of adding various concentrations (0, 0.001, 0.01 and 0.1% (w/w)) of green tea extract (GTE) to dairy beverages (DB) containing linseed oil (2.0%, w/w), in order to inhibit lipid oxidation during storage at high temperature (50 °C) or under fluorescent light exposure. During storage, the concentration of catechin (C), epicatechin (EC) and epicatechin gallate (ECG) were significantly reduced (P ≤ 0.05) and degradation rate was greater when the DB were exposed to light (C 35%, EC 74% and ECG 68%) as compared to high temperature (C 34%, EC 45% and ECG 49%). In DB without GTE, the conjugated dienes (CD) hydroperoxides concentration increased significantly (P ≤ 0.05) from 23 mmol kg-1 fat to 243 mmol kg-1 fat under 6-day-light exposition, and to 83 mmol kg-1 fat under 6-day-heat temperature. The addition of GTE significantly increased the antioxidant capacity of DB and reduced the formation of CD, propanal and hexanal, induced by light exposure or high temperature. GTE at 0.10% completely inhibited CD formation during the storage period and reduced propanal and hexanal concentrations below the threshold.


Asunto(s)
Catequina , Bebidas , Aceite de Linaza , Extractos Vegetales ,
3.
Food Funct ; 7(8): 3421-30, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27443888

RESUMEN

The low bioavailability of dietary phenolic compounds, resulting from poor absorption and high rates of metabolism and excretion, is a concern as it can limit their potential beneficial effects on health. Targeted metabolomic profiling in plasma and feces of mice supplemented for 15 days with a blueberry extract, a grape extract or their combination revealed significantly increased plasma concentrations (3-5 fold) of blueberry phenolic metabolites in the presence of a co-ingested grape extract, associated with an equivalent decrease in their appearance in feces. Additionally, the repeated daily administration of the blueberry-grape combination significantly increased plasma phenolic concentrations (2-3-fold) compared to animals receiving only a single acute dose, with no such increase being observed with individual extracts. These findings highlight a positive interaction between blueberry and grape constituents, in which the grape extract enhanced the absorption of blueberry phenolic compounds. This study provides for the first time in vivo evidence of such an interaction occurring between co-ingested phenolic compounds from fruit extracts leading to their improved bioavailability.


Asunto(s)
Arándanos Azules (Planta)/química , Heces/química , Fenol/sangre , Fenol/farmacocinética , Animales , Disponibilidad Biológica , Suplementos Dietéticos , Extracto de Semillas de Uva/sangre , Extracto de Semillas de Uva/farmacocinética , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Fitoquímicos/sangre , Fitoquímicos/farmacocinética , Vitis/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA