Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 31(21): 5568-5580, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35984732

RESUMEN

How invasive species cope with novel selective pressures with limited genetic variation is a fundamental question in molecular ecology. Several mechanisms have been proposed, but they can lack generality. Here, we addressed an alternative solution, polygenic adaptation, wherein traits that arise from multiple combinations of loci may be less sensitive to loss of variation during invasion. We tested the polygenic signal of environmental adaptation of Colorado potato beetle (CPB) introduced in Eurasia. Population genomic analyses showed declining genetic diversity in the eastward expansion of Eurasian populations, and weak population genetic structure (except for the invasion fronts in Asia). Demographic history showed that all populations shared a strong bottleneck about 100 years ago when CPB was introduced to Europe. Genome scans revealed a suite of genes involved in activity regulation functions that are plausibly related to cold stress, including some well-founded functions (e.g., the activity of phosphodiesterase, the G-protein regulator) and discrete functions. Such polygenic architecture supports the hypothesis that polygenic adaptation and potentially genetic redundancy can fuel the adaptation of CPB despite strong genetic depletion, thus representing a promising general mechanism for resolving the genetic paradox of invasion. More broadly, most complex traits based on polygenes may be less sensitive to invasive bottlenecks, thus ensuring the evolutionary success of invasive species in novel environments.


Asunto(s)
Escarabajos , Solanum tuberosum , Animales , Escarabajos/genética , Herencia Multifactorial/genética , Especies Introducidas , Hidrolasas Diéster Fosfóricas/genética
2.
J Invertebr Pathol ; 157: 1-3, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30012477

RESUMEN

Galleria mellonella fed 3 million Nosema pyrausta spores per larva showed 0 and 5% infestation rate at 30 °C and 24 °C, respectively. N. pyrausta virulence did not increase after passage through G. mellonella for three generations. When larvae were pretreated with phenylthiourea, Bacillus thuringiensis or combination of both, infection rates were 11%, 15% and 22%, respectively. Injection of untreated and potassium hydroxide-primed spores resulted in approximately 10% and 50% infection, respectively. G. mellonella is resistant to high dosages of N. pyrausta spores, serving as a prospective model of insect resistance to microsporidia, while host immunosuppression and/or spore activation increases success of the pathogen.


Asunto(s)
Resistencia a la Enfermedad/fisiología , Modelos Animales , Mariposas Nocturnas/microbiología , Micosis/veterinaria , Nosema/patogenicidad , Animales , Microsporidiosis/veterinaria , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA