Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroscience ; 297: 205-10, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-25839148

RESUMEN

Somatostatin is a 14-28 amino acid peptide that is located not only in the gastrointestinal system but also in multiple sites of the human brain. The inhibitory effect of somatostatin on the growth hormone (GH) secretion of the pituitary gland is a well-established phenomenon. There is a general consensus that somatostatin is released into the hypophysial portal blood and modulates GH secretion by hormonal action. In the present study, we explored the possibility that in addition to the hormonal route, somatostatin may also influence GH secretion via influencing the growth hormone-releasing hormone (GHRH) secretion by direct contacts that may be functional synapses. Since the verification of these putative synapses by electron microscopy is virtually impossible in humans due to the long post mortem time, in order to reveal the putative somatostatinergic-GHRH juxtapositions, light microscopic double-label immunohistochemistry was utilized. By examining the slides with high magnification, we observed that the vast majority of the GHRH perikarya received contacting somatostatinergic axonal varicosities in the arcuate nucleus. In contrast, GHRH axonal varicosities rarely contacted somatostatinergic perikarya. The morphology and the abundance of somatostatin to GHRH juxtapositions indicate that these associations are functional synapses, and they represent, at least partially, the morphological substrate of the somatostatin-influenced GHRH secretion. Thus, in addition to influencing the GH secretion directly via the hypophysial portal system, somatostatin may also modulate GH release from the anterior pituitary by regulating the hypothalamic GHRH secretion via direct contacts. The rare GHRH to somatostatin juxtapositions indicate that the negative feedback effect of GH targets the somatostatinergic system directly and not via the GHRH system.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hipotálamo/citología , Unión Neuroefectora/metabolismo , Neuronas/metabolismo , Somatostatina/metabolismo , Anciano de 80 o más Años , Femenino , Humanos , Masculino
2.
Neuroscience ; 258: 238-45, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24239719

RESUMEN

Although it is a general consensus that opioids modulate growth, the mechanism of this phenomenon is largely unknown. Since endogenous opiates use the same receptor family as morphine, these peptides may be one of the key regulators of growth in humans by impacting growth hormone (GH) secretion, either directly, or indirectly, via growth hormone-releasing hormone (GHRH) release. However, the exact mechanism of this regulation has not been elucidated yet. In the present study we identified close juxtapositions between the enkephalinergic/endorphinergic/dynorphinergic axonal varicosities and GHRH-immunoreactive (IR) perikarya in the human hypothalamus. Due to the long post mortem period electron microscopy could not be utilized to detect the presence of synapses between the enkephalinergic/endorphinergic/dynorphinergic and GHRH neurons. Therefore, we used light microscopic double-label immunocytochemistry to identify putative juxtapositions between these systems. Our findings revealed that the majority of the GHRH-IR perikarya formed intimate associations with enkephalinergic axonal varicosities in the infundibular nucleus/median eminence, while endorphinergic-GHRH juxtapositions were much less frequent. In contrast, no significant dynorphinergic-GHRH associations were detected. The density of the abutting enkephalinergic fibers on the surface of the GHRH perikarya suggests that these juxtapositions may be functional synapses and may represent the morphological substrate of the impact of enkephalin on growth. The small number of GHRH neurons innervated by the endorphin and dynorphin systems indicates significant differences between the regulatory roles of endogenous opiates on growth in humans.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Péptidos Opioides/metabolismo , Anciano , Anciano de 80 o más Años , Axones/metabolismo , Dinorfinas/metabolismo , Encefalina Leucina/metabolismo , Femenino , Humanos , Inmunohistoquímica , Masculino , Eminencia Media/metabolismo , Neurohipófisis/metabolismo , betaendorfina/metabolismo
3.
Neuroscience ; 171(1): 187-95, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-20801195

RESUMEN

Previous studies have demonstrated that catecholaminergic, tyrosine hydroxylase (TH)-immunoreactive (IR) perikarya and fibers are widely distributed in the human hypothalamus. Since TH is the key and rate-limiting enzyme for catecholaminergic synthesis, these IR neurons may represent dopaminergic, noradrenergic or adrenergic neural elements. However, the distribution and morphology of these neurotransmitter systems in the human hypothalamus is not entirely known. Since the different catecholaminergic systems can be detected by identifying the neurons containing the specific key enzymes of catecholaminergic synthesis, in the present study we mapped the catecholaminergic elements in the human hypothalamus using immunohistochemistry against the catecholaminergic enzymes, TH, dopamine beta-hydroxylase (DBH) and phenylethanolamine-N-methyltransferase (PNMT). Only a few, PNMT-IR, adrenergic neuronal elements were found mainly in the infundibulum and the periventricular zone. DBH-IR structures were more widely distributed in the human hypothalamus occupying chiefly the infundibulum/infundibular nucleus, periventricular area, supraoptic and paraventricular nuclei. Dopaminergic elements were detected by utilizing double label immunohistochemistry. First, the DBH-IR elements were visualized; then the TH-IR structures, that lack DBH, were detected with a different chromogen. In our study, we conclude that all of the catecholaminergic perikarya and the majority of the catecholaminergic fibers represent dopaminergic neurons in the human hypothalamus. Due to the extremely small number of PNMT-IR, adrenergic structures in the human hypothalamus, the DBH-IR fibers represent almost exclusively noradrenergic neuronal processes. These findings suggest that the juxtapositions between the TH-IR and numerous peptidergic systems revealed by previous reports indicate mostly dopaminergic synapses.


Asunto(s)
Mapeo Encefálico , Catecolaminas/metabolismo , Hipotálamo/citología , Neuronas/metabolismo , Anciano , Anciano de 80 o más Años , Dopamina beta-Hidroxilasa/metabolismo , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Neuronas/citología , Feniletanolamina N-Metiltransferasa/metabolismo , Cambios Post Mortem , Tirosina 3-Monooxigenasa/metabolismo
4.
J Chem Neuroanat ; 37(4): 229-33, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19481007

RESUMEN

Previous studies revealed that oxytocin release is increased by various forms of stress. Hypertonic saline injection, immobilization, and several other stressors elevated the blood level of oxytocin in rats. However, the mechanism of the stress-induced oxytocin release in human is not elucidated yet. Although numerous studies indicate that catecholamines play a pivotal role in modulating the release of oxytocin, there is a lack of data regarding the morphological substrate of this phenomenon. In order to reveal putative juxtapositions between tyrosine hydroxylase-immunoreactive (TH-IR) catecholaminergic and the oxytocinergic systems in the human hypothalamus, we utilized double-label immunohistochemistry in the present study. Numerous TH-IR axon varicosities abutted on oxytocin-IR neurons in the supraoptic and paraventricular nuclei, forming synapse-like associations. Close examination of these juxtapositions with high magnification failed to reveal any gaps between the contacting elements. In summary, the intimate associations between the TH-IR and oxytocin-IR elements may be functional synapses and may represent the morphological substrate of stress-influenced oxytocin release. The finding that several oxytocin-IR perikarya did not receive apparent TH innervation suggests that additional mechanisms may play significant roles in the oxytocin modulation by stressors.


Asunto(s)
Catecolaminas/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/metabolismo , Vías Nerviosas/metabolismo , Neurosecreción/fisiología , Oxitocina/metabolismo , Anciano , Anciano de 80 o más Años , Biomarcadores/análisis , Biomarcadores/metabolismo , Mapeo Encefálico , Femenino , Humanos , Sistema Hipotálamo-Hipofisario/ultraestructura , Hipotálamo/ultraestructura , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Vías Nerviosas/ultraestructura , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/ultraestructura , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/ultraestructura , Transmisión Sináptica/fisiología , Tirosina 3-Monooxigenasa/análisis , Tirosina 3-Monooxigenasa/metabolismo
5.
Neuroscience ; 153(4): 1146-52, 2008 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-18423883

RESUMEN

Previous studies revealed that stress is a pivotal factor in the regulation of growth. Psychological harassment may result in psychosocial dwarfism with delayed puberty, short stature and depression. Growth hormone (GH) secretion is suppressed by stress, possibly via the attenuation of growth hormone-releasing hormone (GHRH) secretion. However, the morphological substrate of this phenomenon has not been elucidated yet. Since neuropeptide Y (NPY) levels in the plasma is increased by administration of various stressors, the common consensus is that NPY plays a crucial role in the stress response. In the present study, we examined the putative juxtapositions between the NPY- and GHRH-immunoreactive (IR) systems in the human hypothalamus using double-label immunohistochemistry. Our findings revealed that the majority of the GHRH-IR perikarya formed intimate associations with NPY-IR fiber varicosities. The majority of these juxtapositions were found in the infundibular nucleus/median eminence where NPY-IR fiber varicosities often covered a significant surface area of the GHRH neurons. Since the juxtapositions between the GHRH-IR perikarya and NPY-IR fiber varicosities may be functional synapses, they may represent the morphological substrate of stress-suppressed GH secretion. The large number of contacting elements indicates that NPY plays a pivotal role in GH release, and may be considered as a major factor in the attenuation of growth by stress in humans.


Asunto(s)
Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Red Nerviosa/metabolismo , Neuropéptido Y/metabolismo , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Red Nerviosa/citología , Neuronas/citología , Neuronas/metabolismo , Análisis Numérico Asistido por Computador , Cambios Post Mortem , Sinapsis/metabolismo
6.
J Neuroendocrinol ; 18(12): 895-901, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17076765

RESUMEN

It has been postulated that the stress response is associated with water balance via regulating vasopressin release. Nausea, surgical stress and insulin-induced hypoglycaemia were shown to stimulate vasopressin secretion in humans. Increased vasopressin release in turn induces water resorption through the kidneys. Although the mechanism of the stress-mediated vasopressin release is not entirely understood, it is generally accepted that catecholamines play a crucial role in influencing water balance by modulating the secretion of vasopressin. However, the morphological substrate of this modulation has not yet been established. The present study utilised double-label immunohistochemistry to reveal putative juxtapositions between tyrosine hydroxylase (TH)-immunoreactive (IR) catecholaminergic system and the vasopressin systems in the human hypothalamus. In the paraventricular and supraoptic nuclei, numerous vasopressin-IR neurones received TH-IR axon varicosities. Analysis of these juxtapositions with high magnification combined with oil immersion did not reveal any gaps between the contacted elements. In conclusion, the intimate associations between the TH-IR and vasopressin-IR elements may be functional synapses and may represent the morphological basis of vasopressin release modulated by stressors. Because certain vasopressin-IR perikarya receive no detectable TH innervations, it is possible that additional mechanisms may participate in the stress-influenced vasopressin release.


Asunto(s)
Mapeo Encefálico , Catecolaminas/metabolismo , Hipotálamo/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Vasopresinas/metabolismo , Adulto , Anciano , Femenino , Humanos , Imagenología Tridimensional , Inmunohistoquímica , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Vías Nerviosas/metabolismo , Sinapsis/metabolismo
7.
J Neuroendocrinol ; 18(2): 79-95, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16420277

RESUMEN

The gonadotrophin-releasing hormone (GnRH) represents the final common pathway of a neuronal network that integrates multiple external and internal factors to control fertility. Among the many inputs GnRH neurones receive, oestrogens play the most important role. In females, oestrogen, in addition to the negative feedback, also exhibits a positive feedback influence upon the activity and output of GnRH neurones to generate the preovulatory luteinising hormone surge and ovulation. Until recently, the belief has been that the GnRH neurones do not contain oestrogen receptors and that the action of oestrogen upon GnRH neurones is indirect, involving several, oestrogen-sensitive neurotransmitter and neuromodulator systems that trans-synaptically regulate the activity of the GnRH neurones. Although this concept still holds for humans, recent studies indicate that oestrogen receptor-beta is expressed in GnRH neurones of the rat. This review provides three dimensional stereoscopic images of GnRH-immunoreactive (IR) and some peptidergic (neuropeptide Y-, substance P-, beta-endorphin-, leu-enkaphalin-, corticotrophin hormone-releasing- and galanin-IR) and catecholaminergic neurones and the communication of these potential oestrogen-sensitive neuronal systems with GnRH neurones in the human hypothalamus. Because the post-mortem human tissue does not allow the electron microscopic identification of synapses on GnRH neurones, the data presented here are based on light microscopic immunocytochemical experiments using high magnification with oil immersion, semithin sections or confocal microscopy.


Asunto(s)
Fertilidad/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/citología , Vías Nerviosas/citología , Neuronas/metabolismo , Comunicación Celular/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Encefalina Leucina/metabolismo , Retroalimentación Fisiológica , Femenino , Galanina/metabolismo , Humanos , Hipotálamo/metabolismo , Imagenología Tridimensional , Masculino , Vías Nerviosas/metabolismo , Neuronas/citología , Neuropéptido Y/metabolismo , Neurotransmisores/metabolismo , Sustancia P/metabolismo , Distribución Tisular , Tirosina 3-Monooxigenasa/metabolismo , betaendorfina/metabolismo
8.
Neuroscience ; 127(3): 695-707, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15283968

RESUMEN

Evidence suggests that galanin plays an important role in the regulation of reproduction in the rat. Galanin is colocalized with luteinizing hormone (LH)-releasing hormone (LHRH) in a subset of LHRH neurons in female rats and galanin-immunoreactive (galanin-IR) nerve terminals innervate LHRH neurons. Recent studies indicate that galanin may control gonadal functions in rats at two different levels: (i) via direct modulation of pituitary LH secretion and/or (ii) indirectly via the regulation of the hypothalamic LHRH release. However, the morphological substrate of any similar modulation is not known in human. In the present series of experiments we first mapped the galanin-IR and LHRH-IR neural elements in human brain, utilizing single label immunohistochemistry. Then, following the superimposition of the maps of these systems, the overlapping sites were identified with double labeling immunocytochemistry and examined in order to verify the putative juxtapositions between galanin-IR and LHRH-IR structures. LHRH and galanin immunoreactivity were detected mainly in the medial basal hypothalamus, in the medial preoptic area and along the diagonal band of Broca. Careful examination of the IR elements in the overlapping areas revealed close, bi-directional contacts between galanin-IR and LHRH-IR structures, which have been verified in semithin plastic sections. These galanin-LHRH and LHRH-galanin juxtapositions were most numerous in the medial preoptic area and in the infundibulum/median eminence of the human diencephalon. In conclusion, the present study is the first to reveal bi-directional juxtapositions between galanin- and LHRH-IR neural elements in the human diencephalon. These galanin-LHRH and LHRH-galanin contacts may be functional synapses, and they may be the morphological substrate of the galanin-controlled gonadal functions in humans.


Asunto(s)
Galanina/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Hipotálamo/citología , Inmunohistoquímica , Masculino , Persona de Mediana Edad
9.
J Comp Neurol ; 427(4): 593-603, 2000 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-11056466

RESUMEN

Neuropeptide Y (NPY) potentiates the effect of luteinizing hormone-releasing hormone (LHRH) on luteinizing hormone secretion in several species, including human. In addition to the pituitary sites, the interactions of the NPY and LHRH systems may involve diencephalic loci. However, the morphologic basis of this putative communication has not yet been elucidated in the human brain. To discover interaction sites, the distribution and connections of LHRH and NPY-immunoreactive (IR) neuronal elements in the human hypothalamus were investigated by means of light microscopic single- and double-label immunocytochemistry. NPY-IR perikarya and fibers were found to be widely distributed in the ventral diencephalon, with high densities in the preopticoseptal, periventricular, and tuberal regions. Small neuronal cell groups were infiltrated with a dense network of varicose NPY-IR fibers in the lateral preoptic area. The LHRH-IR perikarya were located mainly in the preopticoseptal region, diagonal band of Broca, lamina terminalis, and periventricular and infundibular nuclei. A few LHRH-IR neurons and fibers were scattered in the mamillary region. The overlap between the NPY and LHRH systems was apparent in the periventricular, paraventricular, and infundibular nuclei. Double-labeling immunohistochemistry showed NPY-IR axon varicosities in contact with LHRH-IR perikarya and main dendrites. The putative innervation of LHRH neurons by NPY-IR fibers was also seen in 1-microm-thick plastic sections and with confocal laser scanning microscope, thus further supporting the functional impact of NPY-IR terminals on LHRH-IR neurons. The present findings suggest that the hypophysiotropic LHRH-synthesizing neurons may be innervated by intrahypothalamic NPY-IR fibers. Confirmation by ultrastructural analysis would demonstrate that the LHRH system in the human hypothalamus is regulated by NPY, as has been demonstrated in nonhuman species.


Asunto(s)
Diencéfalo/química , Hormona Liberadora de Gonadotropina/análisis , Neuronas/química , Neuropéptido Y/análisis , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Hipotálamo/química , Inmunohistoquímica , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA