Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Proteomics ; 233: 104081, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33352312

RESUMEN

Roots of Mahonia bealei have been used as traditional Chinese medicine with antibacterial, antioxidant and anti-inflammatory properties due to its high alkaloid content. Previously, we reported that alkaloid and flavonoid contents in the M. bealei leaves could be increased by the combined ultraviolet B and dark treatment (UV+D). To explore the underlying metabolic pathways and networks, proteomic and metabolomic analyses of the M. bealei leaves were conducted. Proteins related to tricarboxylic acid cycle, transport and signaling varied greatly under the UV + D. Among them, calmodulin involved in calcium signaling and ATP-binding cassette transporter involved in transport of berberine were increased. Significantly changed metabolites were overrepresented in phenylalanine metabolism, nitrogen metabolism, phenylpropanoid, flavonoid and alkaloid biosynthesis. In addition, the levels of salicylic acid and gibberellin decreased in the UV group and increased in the UV + D group. These results indicate that multi-hormone crosstalk may regulate the biosynthesis of flavonoids and alkaloids to alleviate oxidative stress caused by the UV + D treatment. Furthermore, protoberberine alkaloids may be induced through calcium signaling crosstalk with reaction oxygen species and transported to leaves. SIGNIFICANCE: Mahonia bealei root and stem, not leaf, were used as traditional medicine for a long history because of the high contents of active components. In the present study, UV-B combined with dark treatments induced the production of alkaloids and flavonoids in the M. bealei leaf, especially protoberberine alkaloids such as berberine. Multi-omics analyses indicated that multi-hormone crosstalk, enhanced tricarboxylic acid cycle and active calcium signaling were involved. The study informs a strategy for utilization of the leaves, and improves understanding of the functions of secondary metabolites in M. bealei.


Asunto(s)
Mahonia , Oscuridad , Metabolómica , Hojas de la Planta , Proteómica
2.
J Proteomics ; 143: 286-297, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27233743

RESUMEN

UNLABELLED: Salinity is a major abiotic stress affecting plant growth, development and agriculture productivity. Understanding the molecular mechanisms of salt stress tolerance will provide valuable information for effective crop engineering and breeding. Sugar beet monosomic addition line M14 obtained from the intercross between Beta vulgaris L. and Beta corolliflora Zoss exhibits tolerance to salt stress. In this study, the changes in the M14 proteome and phosphoproteome induced by salt stress were analyzed. We report the characteristics of the M14 plants under 0, 200, and 400mM NaCl using label-free quantitative proteomics approaches. Protein samples were subjected to total proteome profiling using LC-MS/MS and phosphopeptide enrichment to identify phosphopeptides and phosphoproteins. A total of 2182 proteins were identified and 114 proteins showed differential levels under salt stress. Interestingly, 189 phosphoproteins exhibited significant changes at the phosphorylation level under salt stress. Several signaling components associated with salt stress were found, e.g. 14-3-3 and mitogen-activated protein kinases (MAPK). Fifteen differential phosphoproteins and proteins involved in signal transduction were tested at the transcriptional level. The results revealed the short-term salt responsive mechanisms of the special sugar beet M14 line using label-free quantitative phosphoproteomics. BIOLOGICAL SIGNIFICANCE: Sugar beet monosomic addition line M14 is a special germplasm with salt stress tolerance. Analysis of the M14 proteome and phosphoproteome under salt stress has provided insight into specific response mechanisms underlying salt stress tolerance. Reversible protein phosphorylation regulates a wide range of cellular processes such as transmembrane signaling, intracellular amplification of signals, and cell-cycle control. This study has identified significantly changed proteins and phosphoproteins, and determined their potential relevance to salt stress response. The knowledge gained can be potentially applied to improving crop salt tolerance.


Asunto(s)
Beta vulgaris/química , Fosfoproteínas/análisis , Tolerancia a la Sal , Beta vulgaris/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fosfoproteínas/fisiología , Fosforilación/efectos de los fármacos , Proteómica/métodos , Salinidad , Transducción de Señal , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA