Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 283(1828)2016 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-27075256

RESUMEN

At present, there is substantive evidence that the nutritional content of agriculturally important food crops will decrease in response to rising levels of atmospheric carbon dioxide, Ca However, whether Ca-induced declines in nutritional quality are also occurring for pollinator food sources is unknown. Flowering late in the season, goldenrod (Solidago spp.) pollen is a widely available autumnal food source commonly acknowledged by apiarists to be essential to native bee (e.g. Bombus spp.) and honeybee (Apis mellifera) health and winter survival. Using floral collections obtained from the Smithsonian Natural History Museum, we quantified Ca-induced temporal changes in pollen protein concentration of Canada goldenrod (Solidago canadensis), the most wide spread Solidago taxon, from hundreds of samples collected throughout the USA and southern Canada over the period 1842-2014 (i.e. a Ca from approx. 280 to 398 ppm). In addition, we conducted a 2 year in situtrial of S. Canadensis populations grown along a continuous Ca gradient from approximately 280 to 500 ppm. The historical data indicated a strong significant correlation between recent increases in Ca and reductions in pollen protein concentration (r(2)= 0.81). Experimental data confirmed this decrease in pollen protein concentration, and indicated that it would be ongoing as Ca continues to rise in the near term, i.e. to 500 ppm (r(2)= 0.88). While additional data are needed to quantify the subsequent effects of reduced protein concentration for Canada goldenrod on bee health and population stability, these results are the first to indicate that increasing Ca can reduce protein content of a floral pollen source widely used by North American bees.


Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/química , Abejas/fisiología , Dióxido de Carbono/análisis , Solidago/fisiología , Animales , Cambio Climático , Flores/fisiología , Indiana , Maryland , Polen/química , Polinización
2.
New Phytol ; 200(1): 122-133, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23822593

RESUMEN

Together, climate and litter quality strongly regulate decomposition rates. Although these two factors and their interaction have been studied across species in continent-scale experiments, few researchers have studied how labile and recalcitrant compounds interact to influence decomposition, or the climate sensitivity of decomposition, within a litter type. Over a period of 3 yr, we studied the effects of warming and altered precipitation on mass loss and compound-specific decomposition using two litter types that possessed similar heteropolymer chemistry, but different proportions of labile and recalcitrant compounds. Climate treatments immediately affected the mass loss of the more recalcitrant litter, but affected the more labile litter only after 2 yr. After 3 yr, although both litter types had lost similar amounts of mass, warming (c. 4°C) and supplemental precipitation (150% of ambient) together accelerated the degradation of alkyl-carbon and lignin only in the more recalcitrant litter, highlighting the role of initial litter quality in determining whether the chemistry of litter residues converges or diverges under different climates. Our finding that labile compounds in litter reduce the climate sensitivity of mass loss and the decomposition of recalcitrant matrix is novel. Our results highlight the potential for litter quality to regulate the effect of climatic changes on the sequestration of litter-derived carbon.


Asunto(s)
Carbono/química , Calentamiento Global , Sustancias Húmicas/análisis , Lignina/química , Tallos de la Planta/química , Lluvia , Temperatura , Ciclo del Carbono , Polygonum/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA