Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Metab ; 4(5): 627-643, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35501599

RESUMEN

Brain-derived neurotrophic factor (BDNF) is essential for maintaining energy and glucose balance within the central nervous system. Because the study of its metabolic actions has been limited to effects in neuronal cells, its role in other cell types within the brain remains poorly understood. Here we show that astrocytic BDNF signaling within the ventromedial hypothalamus (VMH) modulates neuronal activity in response to changes in energy status. This occurs via the truncated TrkB.T1 receptor. Accordingly, either fasting or central BDNF depletion enhances astrocytic synaptic glutamate clearance, thereby decreasing neuronal activity in mice. Notably, selective depletion of TrkB.T1 in VMH astrocytes blunts the effects of energy status on excitatory transmission, as well as on responses to leptin, glucose and lipids. These effects are driven by increased astrocytic invasion of excitatory synapses, enhanced glutamate reuptake and decreased neuronal activity. We thus identify BDNF/TrkB.T1 signaling in VMH astrocytes as an essential mechanism that participates in energy and glucose homeostasis.


Asunto(s)
Astrocitos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Animales , Astrocitos/metabolismo , Glucosa/metabolismo , Glutamatos/metabolismo , Homeostasis , Hipotálamo/metabolismo , Ratones
2.
Neuropharmacology ; 167: 107702, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31301334

RESUMEN

The epilepsies are a complex group of disorders that can be caused by a myriad of genetic and acquired factors. As such, identifying interventions that will prevent development of epilepsy, as well as cure the disorder once established, will require a multifaceted approach. Here we discuss the progress in scientific discovery propelling us towards this goal, including identification of genetic risk factors and big data approaches that integrate clinical and molecular 'omics' datasets to identify common pathophysiological signatures and biomarkers. We discuss the many animal and cellular models of epilepsy, what they have taught us about pathophysiology, and the cutting edge cellular, optogenetic, chemogenetic and anti-seizure drug screening approaches that are being used to find new cures in these models. Finally, we reflect on the work that still needs to be done towards identify at-risk individuals early, targeting and stopping epileptogenesis, and optimizing promising treatment approaches. Ultimately, developing and implementing cures for epilepsy will require a coordinated and immense effort from clinicians and basic scientists, as well as industry, and should always be guided by the needs of individuals affected by epilepsy and their families. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Descubrimiento de Drogas/métodos , Epilepsia/terapia , Terapia Genética/métodos , Animales , Anticonvulsivantes/farmacología , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Descubrimiento de Drogas/tendencias , Evaluación Preclínica de Medicamentos/métodos , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/fisiología , Epilepsia/diagnóstico , Epilepsia/genética , Terapia Genética/tendencias , Humanos
3.
Neuroscientist ; 22(3): 295-312, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-25948650

RESUMEN

Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer's disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/metabolismo , Epilepsia/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Canales Iónicos/metabolismo , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Serina-Treonina Quinasas TOR/metabolismo , Tálamo/metabolismo , Tálamo/fisiopatología , Ácido gamma-Aminobutírico/metabolismo , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA