RESUMEN
Eltrombopag (EPAG) has been approved for the treatment of aplastic anemia and for immune thrombocytopenia, and a subset of patients require long-term therapy. Due to polyvalent cation chelation, prolonged therapy leads to previously underappreciated iron depletion. We conducted a retrospective review of patients treated at the NIH for aplastic anemia, myelodysplastic syndrome, and unilineage cytopenias, comparing those treated with EPAG to a historical cohort treated with immunosuppression without EPAG. We examined iron parameters, duration of therapy, response assessment, relapse rates, and common demographic parameters. We included 521 subjects treated with (n = 315) or without EPAG (n = 206) across 11 studies with multiyear follow-up (3.6 vs. 8.5 years, respectively). Duration of EPAG exposure correlated with ferritin reduction (p = 4 × 10-14 ) regardless of response, maximum dose, or degree of initial iron overload. Clearance followed first-order kinetics with faster clearance (half-life 15.3 months) compared with historical responders (47.5 months, p = 8 × 10-10 ). Risk of iron depletion was dependent upon baseline ferritin and duration of therapy. Baseline ferritin did not correlate with response of marrow failure to EPAG or to relapse risk, and timing of iron clearance did not correlate with disease response. In conclusion, EPAG efficiently chelates total body iron comparable to clinically available chelators. Prolonged use can deplete iron and ultimately lead to iron-deficiency anemia mimicking relapse, responsive to iron supplementation.
Asunto(s)
Anemia Aplásica , Sobrecarga de Hierro , Pancitopenia , Trombocitopenia , Anemia Aplásica/tratamiento farmacológico , Benzoatos/efectos adversos , Ferritinas , Humanos , Hidrazinas , Hierro/uso terapéutico , Sobrecarga de Hierro/inducido químicamente , Sobrecarga de Hierro/etiología , Pancitopenia/inducido químicamente , Pirazoles , Recurrencia , Trombocitopenia/inducido químicamenteRESUMEN
Over the past decade, success in the treatment of serious genetic disorders via gene therapy was finally achieved. However, this progress was tempered by the occurrence of serious adverse events related to vector integration into the genome and activation of adjacent proto-oncogenes. Investigators are now focused on retaining the clinical potential of integrating vectors while decreasing the risk of insertional mutagenesis.