Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Metab ; 34(7): 1054-1063.e7, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35716660

RESUMEN

Liraglutide, an anti-diabetic drug and agonist of the glucagon-like peptide one receptor (GLP1R), has recently been approved to treat obesity in individuals with or without type 2 diabetes. Despite its extensive metabolic benefits, the mechanism and site of action of liraglutide remain unclear. Here, we demonstrate that liraglutide is shuttled to target cells in the mouse hypothalamus by specialized ependymoglial cells called tanycytes, bypassing the blood-brain barrier. Selectively silencing GLP1R in tanycytes or inhibiting tanycytic transcytosis by botulinum neurotoxin expression not only hampers liraglutide transport into the brain and its activation of target hypothalamic neurons, but also blocks its anti-obesity effects on food intake, body weight and fat mass, and fatty acid oxidation. Collectively, these striking data indicate that the liraglutide-induced activation of hypothalamic neurons and its downstream metabolic effects are mediated by its tanycytic transport into the mediobasal hypothalamus, strengthening the notion of tanycytes as key regulators of metabolic homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Liraglutida , Animales , Barrera Hematoencefálica , Diabetes Mellitus Tipo 2/metabolismo , Células Ependimogliales , Hipotálamo/metabolismo , Liraglutida/farmacología , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
2.
Mol Neurobiol ; 57(8): 3307-3333, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32519243

RESUMEN

Research on energy homeostasis has focused on neuronal signaling; however, the role of glial cells has remained little explored. Glial endozepines exert anorexigenic actions by mechanisms which remain poorly understood. In this context, the present study was designed to decipher the mechanisms underlying the anorexigenic action of endozepines and to investigate their potential curative effect on high-fat diet-induced obesity. We carried out a combination of physiological, pharmacological, and molecular analyses together to dissect the underlying mechanisms of endozepine-induced hypophagia. To evaluate the potential anti-obesity effect of endozepines, different model of obesity were used, i.e., ob/ob and diet-induced obese mice. We show that the intracerebral administration of endozepines enhances satiety by targeting anorexigenic brain circuitry and induces STAT3 phosphorylation, a hallmark of leptin signaling. Strikingly, endozepines are entirely ineffective at reducing food intake in the presence of a circulating leptin antagonist and in leptin-deficient mice (ob/ob) but potentiate the reduced food intake and weight loss induced by exogenous leptin administration in these animals. Endozepines reversed high fat diet-induced obesity by reducing food intake and restored leptin-induced STAT3 phosphorylation in the hypothalamus. Interestingly, we observed that glucose and insulin synergistically enhance tanycytic endozepine expression and release. Finally, endozepines, which induce ERK activation necessary for leptin transport into the brain in cultured tanycytes, require tanycytic leptin receptor expression to promote STAT3 phosphorylation in the hypothalamus. Our data identify endozepines as potential anti-obesity compounds in part through the modulation of the LepR-ERK-dependent tanycytic leptin shuttle.


Asunto(s)
Inhibidor de la Unión a Diazepam/metabolismo , Dieta Alta en Grasa , Hipotálamo/metabolismo , Leptina/metabolismo , Neuroglía/metabolismo , Obesidad/metabolismo , Animales , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Homeostasis/fisiología , Leptina/genética , Masculino , Ratones Endogámicos C57BL , Ratones Obesos
3.
Nat Metab ; 1(8): 811-829, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31579887

RESUMEN

Dopamine signaling is a crucial part of the brain reward system and can affect feeding behavior. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R stimulation requires an intact sympathetic nervous system and orexin system to exert its action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as early as 3 months after onset of treatment, patients treated with the D2R agonist cabergoline experience an increase in energy expenditure that persists for one year, leading to total body weight and fat loss through a prolactin-independent mechanism. Our results may provide a mechanistic explanation for how clinically used D2R agonists act in the CNS to regulate energy balance.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Dopamina/metabolismo , Hipotálamo/metabolismo , Transducción de Señal , Termogénesis/fisiología , Animales , Bromocriptina/administración & dosificación , Bromocriptina/farmacología , Femenino , Humanos , Hipotálamo/efectos de los fármacos , Inyecciones Intraventriculares , Masculino , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA