RESUMEN
PURPOSE: The objective of this study was to evaluate the capacity of modified phenols synthesized from hydroxytyrosol, a natural olive oil phenol, specifically those containing a selenium or sulphur group, to inhibit lipid peroxidation. METHODS: The compounds' abilities to inhibit lipid peroxidation in liver microsomes obtained from vitamin E-deficient rats were compared to hydroxytyrosol. RESULTS: All synthetic compounds had a significant higher ability to inhibit lipid peroxidation than hydroxytyrosol. Selenium derivates displayed a higher antioxidant activity than sulphur derivatives. In addition, the antioxidant activity increased with a higher number of heteroatoms in the hydroxytyrosol molecular structure. CONCLUSION: The study shows, for the first time, the ability of synthetic compounds, derived from the most active phenol present in olives in free form (hydroxytyrosol), and containing one or two atoms of sulphur or selenium, to inhibit the lipid peroxidation of vitamin E-deficient microsomes. The antioxidant activity of five thioureas, a disulfide, a thiol, three selenoureas, a diselenide, and a selenonium were evaluated and the results showed a higher inhibition of lipid peroxidation than the natural phenol. Selenium and sulphur derivatives of hydroxytyrosol are novel antioxidants with the potential to supplement the lack of vitamin E in the diet as natural alternatives for the prevention of diseases related to oxidative damage.
Asunto(s)
Peroxidación de Lípido/efectos de los fármacos , Microsomas Hepáticos/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Selenio/farmacología , Azufre/farmacología , Deficiencia de Vitamina E , Animales , Modelos Animales de Enfermedad , Alcohol Feniletílico/farmacología , RatasRESUMEN
PURPOSE: Low fruit and vegetable consumption is linked with an increased risk of death from vascular disease and cancer. The benefit of eating fruits and vegetables is attributed in part to antioxidants, vitamins and phytochemicals. Whether increasing intake impacts on markers of disease remains to be established. This study investigates whether increasing daily intake of fruits, vegetables and juices from low (approx. 3 portions), to high intakes (approx. 8 portions) impacts on nutritional and clinical biomarkers. Barriers to achieving the recommended fruit and vegetable intakes are also investigated. METHOD: In a randomised clinical trial, the participants [19 men and 26 women (39-58 years)] with low reported fruit, juice and vegetable intake (<3 portions/day) were randomised to consume either their usual diet or a diet supplemented with an additional 480 g of fruit and vegetables and fruit juice (300 ml) daily for 12 weeks. Nutritional biomarkers (vitamin C, carotenoids, B vitamins), antioxidant capacity and genomic stability were measured pre-intervention, at 4-, 8- and 12 weeks throughout the intervention. Samples were also taken post-intervention after a 6-week washout period. Glucose, homocysteine, lipids, blood pressure, weight and arterial stiffness were also measured. Intake of fruit, fruit juice and vegetables was reassessed 12 months after conducting the study and a questionnaire was developed to identify barriers to healthy eating. RESULTS: Intake increased significantly in the intervention group compared to controls, achieving 8.4 portions/day after 12 weeks. Plasma vitamin C (35%), folate (15%) and certain carotenoids [α-carotene (50%) and ß-carotene (70%) and lutein/zeaxanthin (70%)] were significantly increased (P < 0.05) in the intervention group. There were no significant changes in antioxidant capacity, DNA damage and markers of vascular health. Barriers to achieving recommended intakes of fruits and vegetables measured 12 months after the intervention period were amount, inconvenience and cost. CONCLUSION: While increasing fruit, juice and vegetable consumption increases circulating level of beneficial nutrients in healthy subjects, a 12-week intervention was not associated with effects on antioxidant status or lymphocyte DNA damage. TRIAL REGISTRATION: This trial was registered at Controlled-Trials.com; registration ISRCTN71368072.
Asunto(s)
Antioxidantes/metabolismo , Biomarcadores/sangre , Dieta , Frutas , Estado Nutricional , Verduras , Adulto , Actitud , Carotenoides , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vitaminas/sangreRESUMEN
Polyphenols are widely regarded to have a wide range of health-promoting qualities, including beneficial effects on cardiovascular disease. Historically, the benefits have been linked to their well-recognized powerful antioxidant activity. However, the concept that the beneficial effects are attributable to direct antioxidant activity in vivo does not pay sufficient heed to the fact that polyphenols degrade rapidly, are poorly absorbed and rapidly metabolized, resulting in very low bioavailability. This review explores alternative mechanisms by which polyphenols, or their metabolites, exert biological activity via mechanisms that can be activated by physiologically relevant concentrations. Evidence is presented to support the action of phenolic derivatives on receptors and signalling pathways to induce adaptive responses that drive changes in endogenous antioxidant, antiplatelet, vasodilatory and anti-inflammatory effects. The implications are that in vitro antioxidant measures as predictors of polyphenol protective activity in vivo hold little relevance and that closer attention needs to be paid to bioavailable metabolites to understand the mode of action of these diet-derived components. LINKED ARTICLES: This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Asunto(s)
Antioxidantes/farmacología , Enfermedades Cardiovasculares/prevención & control , Polifenoles/farmacología , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacocinética , Disponibilidad Biológica , Dieta , Suplementos Dietéticos , Humanos , Polifenoles/farmacocinéticaRESUMEN
Oxidative stress is a key feature of the atherothrombotic process involved in the etiology of heart attacks, ischemic strokes, and peripheral arterial disease. It stands to reason that antioxidants represent a credible therapeutic option to prevent disease progression and thereby improve outcome, but despite positive findings from in vitro studies, clinical trials have failed to consistently show benefit. The aim of this review is to re-appraise the concept of antioxidants in the prevention and management of cardiovascular disease. In particular, the review will explore the reasons behind failed antioxidant strategies with vitamin supplements and will evaluate how flavonoids might improve cardiovascular function despite bioavailability that is not sufficiently high to directly influence antioxidant capacity. As well as reaching conclusions relating to those antioxidant strategies that might hold merit, the major myths, limitations, and pitfalls associated with this research field are explored.
RESUMEN
SCOPE: Cell defenses regulating homeostatic control of postprandial stress are influenced by interindividual variation, food composition and health status. This study investigates effects of food composition on individual postprandial responses and associations with health. METHODS AND RESULTS: Volunteers (n = 16) consumed four food formulations (50% unsaturated/saturated fat, with/without beetroot extract 10 g/100 g) on separate occasions. GeXP assay measured whole blood postprandial gene expression profiles of 28 cell defense markers at baseline and postprandial time points 1, 2, 4, 6, 24 h. Plasma markers of metabolic lipids, hormones, inflammatory cytokines, oxidative stress, and DNA damage/repair were also assessed. SIRT 1, UCP2, HO1, GSS, PTGS2, TP53, CDKN2A, PPIA, SOCS3, and APE1 expression profiles revealed distinct stratified subgroups associated with plasma HDLs, TNF-α and postprandial responses of SOCS3, and PPIA. Leptin, IL6, and DNA strand breaks revealed differing responses to fat type consumed. CONCLUSION: This study demonstrates postprandial immune, inflammatory, redox, metabolic, and DNA repair responses that are largely independent of fat type consumed (unsaturated/saturated) or addition of beetroot extract, in apparently healthy individuals. However, postprandial responses can be characterized by regulation of gene expression associated with markers linked to health status and are subject to interindividual variation that can influence postprandial responses.
Asunto(s)
Antioxidantes/administración & dosificación , Beta vulgaris/química , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Regulación de la Expresión Génica , Estrés Oxidativo , Extractos Vegetales/administración & dosificación , Adulto , Antioxidantes/análisis , Biomarcadores/sangre , Daño del ADN , Reparación del ADN , Perfilación de la Expresión Génica , Humanos , Inmunidad Celular , Lipoproteínas HDL/sangre , Masculino , Comidas , Persona de Mediana Edad , Raíces de Plantas/química , Periodo Posprandial , Análisis de Componente Principal , Escocia , Adulto JovenRESUMEN
While oxidative damage owing to reactive oxygen species (ROS) often increases with advancing age and is associated with many age-related diseases, its causative role in ageing is controversial. In particular, studies that have attempted to modulate ROS-induced damage, either upwards or downwards, using antioxidant or genetic approaches, generally do not show a predictable effect on lifespan. Here, we investigated whether dietary supplementation with either vitamin E (α-tocopherol) or vitamin C (ascorbic acid) affected oxidative damage and lifespan in short-tailed field voles, Microtus agrestis. We predicted that antioxidant supplementation would reduce ROS-induced oxidative damage and increase lifespan relative to unsupplemented controls. Antioxidant supplementation for nine months reduced hepatic lipid peroxidation, but DNA oxidative damage to hepatocytes and lymphocytes was unaffected. Surprisingly, antioxidant supplementation significantly shortened lifespan in voles maintained under both cold (7 ± 2°C) and warm (22 ± 2°C) conditions. These data further question the predictions of free-radical theory of ageing and critically, given our previous research in mice, indicate that similar levels of antioxidants can induce widely different interspecific effects on lifespan.
Asunto(s)
Antioxidantes/administración & dosificación , Arvicolinae/fisiología , Ácido Ascórbico/administración & dosificación , Longevidad/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , alfa-Tocoferol/administración & dosificación , Animales , Metabolismo Basal/efectos de los fármacos , Frío , Suplementos Dietéticos , Femenino , Masculino , Especies Reactivas de Oxígeno/farmacologíaRESUMEN
SCOPE: Olive products are rich in phenolic compounds, which are natural antioxidants in vitro. We tested the in vivo effects of alperujo, an olive production by-product, as well as hydroxytyrosol and 3,4-dihydroxyphenylglycol (DHPG) isolated from alperujo, on indices and pathways of oxidative and metabolic stress in a vitamin E-deficient rat model. METHODS AND RESULTS: Rats were fed a vitamin E-deficient diet for 10 weeks, followed by this diet supplemented with either 100 mg/kg diet dα-tocopherol, alperujo extract, hydroxytyrosol, or 10 mg/kg diet DHPG, for a further 2 weeks. We detected alperujo phenolics in tissues and blood, indicating they are bioavailable. Alperujo extract partially ameliorated elevated plasma levels of thiobarbituric acid reactive substances and also lowered plasma cholesterol levels, whereas hydroxytyrosol increased plasma triglyceride levels. Proteomics and subsequent network analysis revealed that hepatic mitochondrial aldehyde dehydrogenase (ALDH2), of which protein and activity levels were regulated by dα-tocopherol and olive phenolics, represents a novel central regulatory protein hub affected by the dietary interventions. CONCLUSION: The in vivo free radical scavenging properties of olive phenolics appear relatively modest in our model. But alternative mechanisms, including regulation of ALDH2, may represent relevant antioxidant mechanisms by which dietary olive phenolics could have beneficial impact on cardiovascular health.
Asunto(s)
Antioxidantes/uso terapéutico , Hígado/metabolismo , Metoxihidroxifenilglicol/análogos & derivados , Olea/química , Estrés Oxidativo , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/uso terapéutico , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa Mitocondrial , Animales , Anticolesterolemiantes/economía , Anticolesterolemiantes/metabolismo , Anticolesterolemiantes/uso terapéutico , Antioxidantes/economía , Antioxidantes/metabolismo , Dieta/efectos adversos , Suplementos Dietéticos/economía , Modelos Animales de Enfermedad , Industria de Procesamiento de Alimentos/economía , Frutas/química , Hipolipemiantes/economía , Hipolipemiantes/metabolismo , Hipolipemiantes/uso terapéutico , Residuos Industriales/análisis , Residuos Industriales/economía , Absorción Intestinal , Hígado/enzimología , Masculino , Metoxihidroxifenilglicol/metabolismo , Metoxihidroxifenilglicol/uso terapéutico , Proteínas Mitocondriales/metabolismo , Alcohol Feniletílico/metabolismo , Alcohol Feniletílico/uso terapéutico , Extractos Vegetales/economía , Extractos Vegetales/metabolismo , Distribución Aleatoria , Ratas , Deficiencia de Vitamina E/sangre , Deficiencia de Vitamina E/etiología , Deficiencia de Vitamina E/metabolismo , Deficiencia de Vitamina E/fisiopatologíaRESUMEN
Salicylic acid and related compounds are produced by plants as part of their defence systems against pathogen attack and environmental stress. First identified in myrtle and willow, the medical use of salicylate-rich preparations as anti-inflammatory and antipyretic treatments may date back to the third millennium BC. It is now known that salicylates are widely distributed throughout the plant kingdom, and they are therefore present in plant products of dietary relevance. In the UK, major food sources are tomato-based sauces, fruit and fruit juice, tea, wine, and herbs and spices. In mammalian cells, salicylic acid demonstrates several bioactivities that are potentially disease-preventative, including the inhibition of production of potentially neoplastic prostaglandins, which arise from the COX-2 mediated catalysis of arachidonic acid. Moreover, it appears to be readily absorbed from the food matrix. This has led some to suggestions that the recognised effects of consuming fruit and vegetables on lowering the risk of several diseases may be due, in part, to salicylates in plant-based foods. However, published estimates of daily salicylic acid intake vary markedly, ranging from 0.4 to 200 mg day(-1), so it is unclear whether the Western diet can provide sufficient salicylates to exert a disease-preventative activity. Some ethnic cuisines that are associated with lowered disease risk may contain considerably more salicylic acid than is obtainable from a Western diet. However known protective effects of acetylsalicylic acid (Aspirin™) may have lead to an over-emphasis on the importance of dietary salicylates compared with other bioactive plant phenolics in the diet.
Asunto(s)
Plantas Comestibles/química , Prevención Primaria , Salicilatos/administración & dosificación , Salicilatos/análisis , Dieta , Frutas/química , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Humanos , Solanum lycopersicum/química , Antagonistas de Prostaglandina , Salicilatos/historia , Especias/análisis , Té/química , Reino Unido , Vino/análisisRESUMEN
There are concerns that weight-loss (WL) diets based on very low carbohydrate (LC) intake have a negative impact on antioxidant status and biomarkers of cardiovascular and metabolic health. Obese men (n 16) participated in a randomised, cross-over design diet trial, with food provided daily, at approximately 8.3 MJ/d (approximately 70 % of energy maintenance requirements). They were provided with two high-protein diets (30 % of energy), each for a 4-week period, involving a LC (4 % carbohydrate) and a moderate carbohydrate (MC, 35 % carbohydrate) content. Body weight was measured daily, and weekly blood samples were collected. On average, subjects lost 6.75 and 4.32 kg of weight on the LC and MC diets, respectively (P < 0.001, SED 0.350). Although the LC and MC diets were associated with a small reduction in plasma concentrations of retinol, vitamin E (α-tocopherol) and ß-cryptoxanthin (P < 0.005), these were still above the values indicative of deficiency. Interestingly, plasma vitamin C concentrations increased on consumption of the LC diet (P < 0.05). Plasma markers of insulin resistance (P < 0.001), lipaemia and inflammation (P < 0.05, TNF-α and IL-10) improved similarly on both diets. There was no change in other cardiovascular markers with WL. The present data suggest that a LC WL diet does not impair plasma indices of cardiometabolic health, at least within 4 weeks, in otherwise healthy obese subjects. In general, improvements in metabolic health associated with WL were similar between the LC and MC diets. Antioxidant supplements may be warranted if LC WL diets are consumed for a prolonged period.
Asunto(s)
Antioxidantes/metabolismo , Dieta Baja en Carbohidratos , Dieta Reductora/métodos , Carbohidratos de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Obesidad/dietoterapia , Pérdida de Peso/fisiología , Adulto , Anciano , Ácido Ascórbico/sangre , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Estudios Cruzados , Criptoxantinas , Endotelio Vascular/efectos de los fármacos , Ingestión de Energía , Humanos , Hiperlipidemias/sangre , Mediadores de Inflamación/sangre , Resistencia a la Insulina , Masculino , Enfermedades Metabólicas/sangre , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/prevención & control , Persona de Mediana Edad , Necesidades Nutricionales , Obesidad/sangre , Factores de Riesgo , Vitamina A/sangre , Xantófilas/sangre , alfa-Tocoferol/sangreRESUMEN
PURPOSE: Platelets play a key role in haemostasis and wound healing, contributing to formation of vascular plugs. They are also involved in formation of atherosclerosic plaques. Some traditional diets, like the Mediterranean diet, are associated with a lower risk of cardiovascular disease. Components in these diets may have anti-platelet functions contributing to their health benefits. METHODS: We studied the effects of alperujo extract, an olive oil production waste product containing the majority of polyphenols found in olive fruits, through measurement of effects on platelet aggregation and activation in isolated human platelets, and through identification of changes in the platelet proteome. RESULTS: Alperujo extract (40 mg/L) significantly decreased in vitro ADP- (p = 0.002) and TRAP- (p = 0.02) induced platelet activation as measured by the flow cytometry using the antibody for p-selectin (CD62p), but it did not affect the conformation of the fibrinogen receptor as measured by flow cytometry using the antibodies for anti-fibrinogen, CD42a and CD42b. Alperujo extract (100 mg/L) inhibited both collagen- and TRAP-induced platelet aggregation by 5% (p < 0.05), and a combination of hydroxytyrosol and 3,4-dihydroxyphenylglycol were, at least partly, responsible for this effect. Proteomic analysis identified nine proteins that were differentially regulated by the alperujo extract upon ADP-induced platelet aggregation. These proteins represent important mechanisms that may underlie the anti-platelet effects of this extract: regulation of platelet structure and aggregation, coagulation and apoptosis, and signalling by integrin αIIb/ß3. CONCLUSIONS: Alperujo extract may protect against platelet activation, platelet adhesion and possibly have anti-inflammatory properties.
Asunto(s)
Plaquetas/efectos de los fármacos , Fitoterapia , Extractos Vegetales/farmacología , Aceites de Plantas/farmacología , Polifenoles/farmacología , Proteómica/métodos , Anticuerpos , Coagulación Sanguínea/efectos de los fármacos , Colágeno/metabolismo , Femenino , Fibrinógeno/efectos de los fármacos , Humanos , Masculino , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/metabolismo , Aceite de Oliva , Selectina-P/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/metabolismo , Adhesividad Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismoRESUMEN
Cardiovascular disease is a chronic disease influenced by many factors, with activated blood platelets being one of them. Platelets play a central role in the formation of plaques within blood vessels, contributing to early inflammatory events. Consumption of diets rich in plant-based products protects against the development of cardiovascular disease. Polyphenols, which are secondary plant metabolites found in a wide range of foodstuffs and beverages, may be partially responsible for these effects. Their protective properties include inhibitory effects on platelet function in vitro and in vivo. However, the bioavailability of many polyphenols is poor and it is unclear whether sufficient quantities can be obtained by dietary means to exert protective effects. Consequently, this review summarizes 25 well-controlled human intervention studies examining the effect of polyphenol-rich diets on platelet function. These studies report a huge variety of research methods, study designs, and study subjects, resulting in controversial assertions. One consistent finding is that cocoa-related products, however, have platelet-inhibiting effects when consumed in moderate amounts. To assess whether other classes of dietary polyphenols, or their metabolites, also beneficially affect platelet function requires more well-controlled intervention studies as well as the adoption of more uniform methods to assess platelet aggregation and activation.
Asunto(s)
Plaquetas/fisiología , Dieta , Flavonoides/administración & dosificación , Fenoles/administración & dosificación , Inhibidores de Agregación Plaquetaria/administración & dosificación , Plaquetas/efectos de los fármacos , Enfermedades Cardiovasculares/prevención & control , Ensayos Clínicos Controlados como Asunto , Suplementos Dietéticos , Flavonoides/metabolismo , Flavonoides/farmacología , Alimentos , Humanos , Fenoles/metabolismo , Fenoles/farmacología , Extractos Vegetales/farmacología , Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , PolifenolesRESUMEN
Diets rich in flavonoids may reduce the risk of developing colorectal cancer. Flavonoids are widely distributed in foods of plant origin, though in the UK tea is the main dietary source. Our objective was to evaluate any independent associations of total dietary and non-tea intake of four flavonoid subclasses and the risk of developing colorectal cancer in a tea-drinking population with a high colorectal cancer incidence. A population-based case-control study (264 cases with histologically confirmed incident colorectal cancer and 408 controls) was carried out. Dietary data gathered by FFQ were used to calculate flavonoid intake. Adjusted OR and 95 % CI were estimated by logistic regression. No linear association between risk of developing colorectal cancer and total dietary flavonol, procyanidin, flavon-3-ol or flavanone intakes was found, but non-tea flavonol intake was inversely associated with colorectal cancer risk (OR 0.6; 95 % CI 0.4, 1.0). Stratification by site of cancer and assessment of individual flavonols showed a reduced risk of developing colon but not rectal cancer with increasing non-tea quercetin intake (OR 0.5; 95 % CI 0.3, 0.8; P(trend) < 0.01). We concluded that flavonols, specifically quercetin, obtained from non-tea components of the diet may be linked with reduced risk of developing colon cancer.
Asunto(s)
Dieta , Flavonoides/farmacología , Anciano , Índice de Masa Corporal , Estudios de Casos y Controles , Catequina/metabolismo , Catequina/farmacología , Neoplasias del Colon/genética , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/prevención & control , Conducta Alimentaria , Femenino , Flavonoides/administración & dosificación , Flavonoides/metabolismo , Flavonoles/metabolismo , Flavonoles/farmacología , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo Genético , Neoplasias del Recto/genética , Valores de Referencia , Factores de Riesgo , Escocia/epidemiología , Encuestas y Cuestionarios , TéRESUMEN
Evidence from a wide range of sources suggests that individuals taking aspirin and related non-steroidal anti-inflammatory drugs have reduced risk of large bowel cancer. Work in animals supports cancer reduction with aspirin, but no long-term randomised clinical trials exist in human beings, and randomisation would be ethically unacceptable because vascular protection would have to be denied to a proportion of the participants. However, opportunistic trials of aspirin, designed to test vascular protection, provide some evidence of a reduction in cancer, but only after at least 10 years. We summarise evidence for the potential benefit of aspirin and natural salicylates in cancer prevention. Possible mechanisms of action and directions for further work are discussed, and implications for clinical practice are considered.
Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Aspirina/uso terapéutico , Medicina Basada en la Evidencia , Neoplasias/prevención & control , Animales , Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Aspirina/farmacología , Neoplasias de la Mama/prevención & control , Estudios de Casos y Controles , Estudios de Cohortes , Neoplasias del Colon/prevención & control , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Ciclooxigenasa/uso terapéutico , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Medicina Basada en la Evidencia/organización & administración , Femenino , Humanos , Pólipos Intestinales/prevención & control , Masculino , Neoplasias/epidemiología , Neoplasias/etiología , Prostaglandina-Endoperóxido Sintasas/efectos de los fármacos , Neoplasias de la Próstata/prevención & control , Ensayos Clínicos Controlados Aleatorios como Asunto , Conducta de Reducción del Riesgo , Factores de TiempoRESUMEN
The effects of dietary antioxidant supplementation on oxidative stress and life span are confused. We maintained C57BL/6 mice at 7 +/- 2 degrees C and supplemented their diet with alpha-tocopherol from 4 months of age. Supplementation significantly increased (p = 0.042) median life span by 15% (785 days, n = 44) relative to unsupplemented controls (682 days, n = 43) and also increased maximum life span (oldest 10%, p = 0.028). No sex or sex by treatment interaction effects were observed on life span, with treatment having no effect on resting or daily metabolic rate. Lymphocyte and hepatocyte oxidative DNA damage and hepatic lipid peroxidation were unaffected by supplementation, but hepatic oxidative DNA damage increased with age. Using a cDNA macroarray, genes associated with xenobiotic metabolism were significantly upregulated in the livers of female mice at 6 months of age (2 months supplementation). At 22 months of age (18 months supplementation) this response had largely abated, but various genes linked to the p21 signaling pathway were upregulated at this time. We suggest that alpha-tocopherol may initially be metabolized as a xenobiotic, potentially explaining why previous studies observe a life span extension generally when lifelong supplementation is initiated early in life. The absence of any significant effect on oxidative damage suggests that the life span extension observed was not mediated via any antioxidant properties of alpha-tocopherol. We propose that the life span extension observed following alpha-tocopherol supplementation may be mediated via upregulation of cytochrome p450 genes after 2 months of supplementation and/or upregulation of p21 signaling genes after 18 months of supplementation. However, these signaling pathways now require further investigation to establish their exact role in life span extension following alpha-tocopherol supplementation.
Asunto(s)
Frío , Longevidad/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , alfa-Tocoferol/farmacología , Animales , Suplementos Dietéticos , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Longevidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Factores de TiempoRESUMEN
Epidemiological studies assessing the health benefits of drinking black tea are equivocal. Such disparity may reflect an inability of semiquantitative assessment to consider how infusion time and addition of milk affect the bioavailability of potentially beneficial antioxidant polyphenols. Six brands of tea demonstrated similar increases in antioxidant capacity and total phenolic and catechin contents with increasing infusion time. These results were unaffected by the addition of milk. Consumption of black tea (400 mL) was associated with significant increases in plasma antioxidant capacity (10%) and concentrations of total phenols (20%), catechins (32%), and the flavonols quercetin (39%) and kaempferol (45%) (all p < 0.01) within 80 min. This was unaffected by adding milk. Infusion time may therefore be a more important determinant in the absorption of polyphenols from black tea. Observational studies assessing the health benefits of tea consumption require recording of brewing methods as well as frequency of consumption.
Asunto(s)
Flavonoides/química , Fenoles/química , Té , Absorción , Animales , Bebidas , Biflavonoides/química , Catequina/análogos & derivados , Catequina/química , Humanos , Absorción Intestinal , Cinética , Leche , Polifenoles , Quercetina/químicaRESUMEN
The polyacetylene falcarinol, isolated from carrots, has been shown to be protective against chemically induced colon cancer development in rats, but the mechanisms are not fully understood. In this study CaCo-2 cells were exposed to falcarinol (0.5-100 microM) and the effects on proliferation, DNA damage, and apoptosis investigated. Low-dose falcarinol exposure (0.5-10 microM) decreased expression of the apoptosis indicator caspase-3 concomitantly with decreased basal DNA strand breakage. Cell proliferation was increased (1-10 microM), whereas cellular attachment was unaffected by <10 microM falcarinol. At concentrations above 20 microM falcarinol, proliferation of CaCo-2 cells decreased and the number of cells expressing active caspase-3 increased simultaneously with increased cell detachment. Furthermore, DNA single-strand breakage was significantly increased at concentrations above 10 microM falcarinol. Thus, the effects of falcarinol on CaCo-2 cells appear to be biphasic, inducing pro-proliferative and apoptotic characteristics at low and high concentrations of falcarinol, respectively.
Asunto(s)
Apoptosis/efectos de los fármacos , División Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Diinos/farmacología , Alcoholes Grasos/farmacología , Células CACO-2 , Caspasa 3/metabolismo , Adhesión Celular/efectos de los fármacos , Daucus carota/química , Humanos , Extractos VegetalesRESUMEN
Oxidative stress is suggested to be central to the ageing process, with endogenous antioxidant defence and repair mechanisms in place to minimize damage. Theoretically, supplementation with exogenous antioxidants might support the endogenous antioxidant system, thereby reducing oxidative damage, ageing-related functional decline and prolonging life- and health-span. Yet supplementation trials with antioxidants in animal models have had minimal success. Human epidemiological data are similarly unimpressive, leading some to question whether vitamin C, for example, might have pro-oxidant properties in vivo. We supplemented cold exposed (7+/-2 degrees C) female C57BL/6 mice over their lifespan with vitamin C (ascorbyl-2-polyphosphate), widely advocated and self administered to reduce oxidative stress, retard ageing and increase healthy lifespan. No effect on mean or maximum lifespan following vitamin C treatment or any significant impact on body mass, or on parameters of energy metabolism was observed. Moreover, no differences in hepatocyte and lymphocyte DNA oxidative damage or hepatic lipid peroxidation was seen between supplemented and control mice. Using a DNA macroarray specific for oxidative stress-related genes, we found that after 18 months of supplementation, mice exhibited a significantly reduced expression of several genes in the liver linked to free-radical scavenging, including Mn-superoxide dismutase. We confirmed these effects by Northern blotting and found additional down-regulation of glutathione peroxidase (not present on macroarray) in the vitamin C treated group. We suggest that high dietary doses of vitamin C are ineffective at prolonging lifespan in mice because any positive benefits derived as an antioxidant are offset by compensatory reductions in endogenous protection mechanisms, leading to no net reduction in accumulated oxidative damage.
Asunto(s)
Antioxidantes/metabolismo , Ácido Ascórbico/administración & dosificación , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Longevidad/fisiología , Vitaminas/administración & dosificación , Animales , Frío , Femenino , Perfilación de la Expresión Génica , Humanos , Peroxidación de Lípido/efectos de los fármacos , Longevidad/efectos de los fármacos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/efectos de los fármacosRESUMEN
Oxidative stress is a characteristic of cancerous colon tissue and inflammatory bowel diseases that increase colon cancer risk. Epidemiological evidence supports a protective effect of plant-derived compounds. Aspirin is also protective against colon cancer. The mechanism of action is unclear although salicylic acid, the main metabolite of aspirin, has been shown to decrease the synthesis of pro-inflammatory and potentially neo-plastic prostaglandins. Salicylic acid is found in significant quantities in a plant-based diet. However, in plants salicylic acid is also reported to modulate the expression of numerous enzymes with antioxidant activity. The aim of this study was to assess whether salicylic acid can modulate pro-cancerous biological pathways in the colon. Oxidative stress, prostaglandins and cytosolic glutathione peroxidase (cyGPX) were analysed in proximal, transverse and distal colon from a rat model of diet-induced oxidative stress. Elevated plasma pyruvate kinase activity (1293+/-206 U/ml) and increased indices of lipid peroxidation in colon (proximal 6.4+/-0.84 nM MDA/mg protein; transverse 6.9+/-0.97 nM MDA/mg protein; distal 5.2+/-0.62 nM MDA/mg protein) from rats fed a Vitamin E deficient diet were significantly decreased on supplementation with salicylic acid (plasma pyruvate 546+/-43 U/ml; salicylic acid proximal 3.6+/-0.39 nM MDA/mg protein; transverse 4.5+/-0.61 nM MDA/mg protein; distal 4.4+/-0.27 nM MDA/mg protein). Reductions in oxidative stress and prostaglandin production on supplementation with salicylic acid were associated with an elevation in glutathione peroxidase activity (Vitamin E deficient proximal 0.056+/-0.013 U/mg protein; transverse 0.073+/-0.008 U/mg protein; distal 0.088+/-0.010 U/mg protein; Vitamin E deficient with salicylic acid proximal 0.17+/-0.01 U/mg protein; transverse 0.23+/-0.016 U/mg protein; distal 0.16+/-0.020 U/mg protein). Gpx1 and Gpx2 gene transcripts were not elevated in association with increased activity of the soluble glutathione peroxidase activity. Glutathione peroxidases are key antioxidant enzymes, catalysing the decomposition of potentially toxic lipid peroxides. Gpx activity and regulation of Gpx gene transcription has been shown previously to be complex with activity not necessarily mirrored by a corresponding elevation in gene transcription. By supplementing the diet of Vitamin E deficient rats with salicylic acid (1 g/kg diet), this study assessed effects of salicylic acid on cytosolic glutathione peroxidase activity in the colon. The ability of salicylic acid to modulate antioxidant enzymes in colon tissue may be an important mechanism in inhibiting colon cancer development.
Asunto(s)
Antiinflamatorios/farmacología , Colon/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Estrés Oxidativo , Ácido Salicílico/farmacología , Animales , Colon/enzimología , Colon/metabolismo , Dinoprostona/metabolismo , Masculino , Reacción en Cadena de la Polimerasa , RatasRESUMEN
BACKGROUND: Fruit and vegetable consumption protects against cancer. This is attributed in part to antioxidants such as vitamin E combating oxidative DNA damage. Anthocyanins are found in significant concentrations in the human diet. However, it remains to be established whether they are bioactive in vivo. AIM: To investigate the consequence both of vitamin E deficiency on oxidative damage to DNA and lipids and the cytoprotective effect of nutritionally relevant levels of cyanidin-3-glycoside both in vivo in rats and in vitro in human colonocytes. METHODS: Male Rowett Hooded Lister rats were fed a diet containing less than 0.5 mg/kg vitamin E or a vitamin E supplemented control diet containing 100 mg d alpha-tocopherol acetate/kg. Half of the controls and vitamin E-deficient rats received cyanidin-3-glycoside (100 mg/kg). After 12 weeks endogenous DNA stability in rat lymphocytes (strand breaks and oxidised bases) and response to oxidative stress ex vivo (H2O2; 200 microM) was measured by single cell gel electrophoresis (SCGE). Tissue levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-Oxo-dG) were measured by HPLC with EC detection. D alpha-tocopherol and lipid peroxidation products (thiobarbituric acid reactive substances; TBARS) were measured by HPLC. Rat plasma pyruvate kinase and the production of reactive oxygen by phagocytes were detected spectrophotometrically and by flow cytometry respectively. Immortalised human colon epithelial cells (HCEC) were preincubated in vitro with the anthocyanins cyanidin and cyanidin-3-glycoside and the flavonol quercetin (all 50 microM) before exposure to H2O2 (200 microM). DNA damage was measured by SCGE as above. RESULTS: Plasma and liver d alpha-tocopherol declined progressively over 12 weeks in rats made vitamin E deficient. Lipid peroxidation was increased significantly in plasma, liver and red cells. Reactive oxygen levels in phagocytes and plasma pyruvate kinase were increased. Vitamin E deficiency did not affect DNA stability in rat lymphocytes, liver or colon. Cyanidin-3-glycoside did not alter lipid peroxidation or DNA damage in rats. However, it was chemoprotective against DNA damage in human colonocytes.DNA strand breakage was decreased 38.8 +/- 2.2% after pretreatment with anthocyanin. CONCLUSION: While it is accepted that vitamin E alters lipid oxidation in vivo, its role in maintaining DNA stability remains unclear. Moreover, whereas cyanidin-3-glycoside protects against oxidative DNA damage in vitro, at nutritionally relevant concentrations it is ineffective against oxidative stress in vivo.
Asunto(s)
Antocianinas/administración & dosificación , Antioxidantes/administración & dosificación , Daño del ADN , Glucósidos/administración & dosificación , Deficiencia de Vitamina E/metabolismo , Animales , Línea Celular , Citoprotección , Daño del ADN/efectos de los fármacos , Dieta , Humanos , Peróxido de Hidrógeno , Peroxidación de Lípido , Hígado/química , Hígado/metabolismo , Linfocitos/metabolismo , Modelos Animales , Estrés Oxidativo , Ratas , Deficiencia de Vitamina E/sangre , alfa-Tocoferol/análisis , alfa-Tocoferol/sangreRESUMEN
Analysis of extracts of Glen Ample raspberries (Rubus idaeus L.) by gradient, reverse phase HPLC with diode array and tandem mass spectrometry identified eleven anthocyanins, including cyanidin-3-sophoroside, cyanidin-3-(2(G)-glucosylrutinoside), cyanidin-3-glucoside, cyanidin-3-rutinoside, pelargonidin-3-sophoroside, pelargonidin-3-(2(G)-glucosylrutinoside), and pelargonidin-3-glucoside. Significant quantities of an ellagitannin, sanguiin H-6, with an M(r) of 1870 were detected along with lower levels of a second ellagitannin, lambertianin C, which has an M(r) of 2804. Other phenolic compounds that were detected included trace levels of ellagic acid and its sugar conjugates along with one kaempferol- and four quercetin-based flavonol conjugates. Fractionation by preparative HPLC revealed that sanguiin H-6 was a major contributor to the antioxidant capacity of raspberries together with vitamin C and the anthocyanins. Vasodilation activity was restricted to fractions containing lambertianin C and sanguiin H-6.