Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Tradit Complement Med ; 7(1): 79-85, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28053891

RESUMEN

OBJECTIVE: To investigate wound healing, antimicrobial and antioxidant activity of leaf extract of Pongamia Pinnata. MATERIALS AND METHODS: Methanolic extracts of P. pinnata leaf were studied for wound healing efficiency, and was assessed by the rate of wound contraction, tensile strength, breaking strength, hydroxyproline and hexosamine content, along with its effect on pro-inflammatory and anti-inflammatory cytokines was assessed using excision and incision model of wound repair in Wistar rats. Antimicrobial activity against ten microorganisms was also assessed. In vivo antioxidant activity was performed to understand the mechanism of wound healing potency. RESULTS: The results indicated that P. pinnata extract has potent wound healing capacity as evident from the wound contraction and increased tensile strength. Hydroxyproline and hexosamine expression were also well correlated with the healing pattern observed. extract exhibited significant antimicrobial activity, Staphylococcus aureus, Staphylococcus pyogenes, Staphylococcus epidermidis, Escherichia coli, Micrococcus luteus, Enterobacter aerogenes, Salmonella typhi, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger also indicate that P. pinnata posses potent antioxidant activity by inhibition lipid peroxidation, reduce glutathione, superoxide dismutase level and increases catalase activity. During early wound healing phase TNF-α and IL-6 level were found to be up-regulated by P. pinnata treatment. CONCLUSION: Increased wound contraction and tensile strength, augmented hydroxyproline and hexosamine content, antioxidative activity and moderate antimicrobial activity support the early wound healing exhibited by P. pinnata. Induction in cytokine production may be one of the mechanisms in accelerating the wound healing. Results suggest that P. pinnata may be useful in tropical management of wound healing.

2.
J Tradit Complement Med ; 6(1): 57-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26870681

RESUMEN

We aimed to evaluate the effects of the natural compounds embelin and piperine on the biofilm-formation property of Streptococcus mutans. A total of 30 clinical isolates were identified as S. mutans and screened for biofilm formation using the microtiter plate method. The strongest biofilm producer (SM03) was used for identifying both minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC). We subsequently used this concentration against each of the strong biofilm producer isolates at A 492 < 0.5 optical density (OD). Of the 30 isolates screened for biofilm formation, 18 isolates showed strong biofilm formation, 09 isolates showed moderate formation, and 03 isolates showed poor/nonbiofilm formation. The MIC of embelin for the strongest biofilm producer (SM03) was 0.55 ± 0.02, whereas that of piperine was 0.33 ± 0.02. The MBIC of embelin was 0.0620 ± 0.03, whereas that of piperine was 0.0407 ± 0.03, which was lower than that of embelin. At OD492 < 0.5, the MBIC of both compounds significantly inhibited biofilm formation of all the 18 strong biofilm-forming isolates. The results of this study demonstrate a significant antibiofilm effect of the natural compounds embelin and piperine, which can contribute towards the development of a database for novel drug candidates for treating oral infections caused by S. mutans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA