Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sci Rep ; 14(1): 5610, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453966

RESUMEN

Given that ketogenic diets (KDs) are extremely high in dietary fat, we compared different fats in KDs to determine which was the best for cancer prevention. Specifically, we compared a Western and a 15% carbohydrate diet to seven different KDs, containing either Western fats or fats enriched in medium chain fatty acids (MCTs), milk fat (MF), palm oil (PO), olive oil (OO), corn oil (CO) or fish oil (FO) for their ability to reduce nicotine-derived nitrosamine ketone (NNK)-induced lung cancer in mice. While all the KDs tested were more effective at reducing lung nodules than the Western or 15% carbohydrate diet, the FO-KD was most effective at reducing lung nodules. Correlating with this, mice on the FO-KD had low blood glucose and the highest ß-hydroxybutyrate level, lowest liver fatty acid synthase/carnitine palmitoyl-1a ratio and a dramatic increase in fecal Akkermansia. We found no liver damage induced by the FO-KD, while the ratio of total cholesterol/HDL was unchanged on the different diets. We conclude that a FO-KD is superior to KDs enriched in other fats in reducing NNK-induced lung cancer, perhaps by being the most effective at skewing whole-body metabolism from a dependence on glucose to fats as an energy source.


Asunto(s)
Dieta Cetogénica , Grasas Insaturadas en la Dieta , Neoplasias Pulmonares , Ratones , Animales , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Grasas Insaturadas en la Dieta/metabolismo , Aceites de Plantas/farmacología , Aceites de Plantas/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/prevención & control , Grasas de la Dieta/metabolismo , Aceite de Oliva , Dieta , Carbohidratos
2.
Front Nutr ; 9: 1051418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532545

RESUMEN

Objectives: Given the current controversy concerning the efficacy of omega 3 supplements at reducing inflammation, we evaluated the safety and efficacy of omega 3 on reducing inflammation in people with a 6-year lung cancer risk >1.5% and a C reactive protein (CRP) level >2 mg/L in a phase IIa cross-over study. Materials and methods: Forty-nine healthy participants ages 55 to 80, who were still smoking or had smoked in the past with ≥30 pack-years smoking history, living in British Columbia, Canada, were randomized in an open-label trial to receive 2.4 g eicosapentaenoic acid (EPA) + 1.2 g docosahexaenoic acid (DHA)/day for 6 months followed by observation for 6 months or observation for 6 months first and then active treatment for the next 6 months. Blood samples were collected over 1 year for measurement of plasma CRP, plasma and red blood cell (RBC) membrane levels of EPA, DHA and other fatty acids, Prostaglandin E2 (PGE2), Leukotriene B4 (LTB4) and an inflammatory marker panel. Results: Twenty one participants who began the trial within the active arm completed the trial while 20 participants who started in the control arm completed the study. Taking omega 3 resulted in a significant decrease in plasma CRP and PGE2 but not LTB4 levels. Importantly, the effect size for the primary outcome, CRP values, at the end of the intervention relative to baseline was medium (Cohen's d = 0.56). DHA, but not EPA levels in RBC membranes inversely correlated with PGE2 levels. Omega 3 also led to a significant reduction in granulocytes and an increase in lymphocytes. These high-dose omega 3 supplements were well tolerated, with only minor gastrointestinal symptoms in a subset of participants. Conclusion: Omega 3 fatty acids taken at 3.6 g/day significantly reduce systemic inflammation with negligible adverse health effects in people who smoke or have smoked and are at high risk of lung cancer.ClinicalTrials.gov, NCT number: NCT03936621.

3.
Am J Clin Nutr ; 116(3): 820-832, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35575618

RESUMEN

BACKGROUND: Dietary methyl donors (e.g., choline) support the activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway, which generates phosphatidylcholine (PC) molecules enriched in DHA that are exported from the liver and made available to extrahepatic tissues. OBJECTIVES: This study investigated the effect of prenatal choline supplementation on biomarkers of DHA status among pregnant participants consuming supplemental DHA. METHODS: Pregnant participants (n = 30) were randomly assigned to receive supplemental choline intakes of 550 mg/d [500 mg/d d0-choline + 50 mg/d deuterium-labeled choline (d9-choline); intervention] or 25 mg/d (25 mg/d d9-choline; control) from gestational week (GW) 12-16 until delivery. All participants received a daily 200-mg DHA supplement and consumed self-selected diets. Fasting blood samples were obtained at baseline, GW 20-24, and GW 28-32; maternal/cord blood was obtained at delivery. Mixed-effects linear models were used to assess the impact of prenatal choline supplementation on maternal and newborn DHA status. RESULTS: Choline supplementation (550 vs. 25 mg/d) did not achieve a statistically significant intervention × time interaction for RBC PC-DHA (P = 0.11); a significant interaction was observed for plasma PC-DHA and RBC total DHA, with choline supplementation yielding higher levels (+32-38% and +8-11%, respectively) at GW 28-32 (P < 0.05) and delivery (P < 0.005). A main effect of choline supplementation on plasma total DHA was also observed (P = 0.018); its interaction with time was not significant (P = 0.068). Compared with controls, the intervention group exhibited higher (P = 0.007; main effect) plasma enrichment of d3-PC (d3-PC/total PC). Moreover, the ratio of d3-PC to d9-PC was higher (+50-67%; P < 0.001) in the choline intervention arm (vs. control) at GW 20-24, GW 28-32, and delivery. CONCLUSIONS: Prenatal choline supplementation improves hepatic DHA export and biomarkers of DHA status by bolstering methyl group supply for PEMT activity among pregnant participants consuming supplemental DHA. This trial is registered at www.clinicaltrials.gov as NCT03194659.


Asunto(s)
Colina , Ácidos Docosahexaenoicos , Biomarcadores , Suplementos Dietéticos , Femenino , Humanos , Recién Nacido , Fosfatidilcolinas/metabolismo , Embarazo , Vitaminas
4.
PLoS One ; 15(12): e0243936, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33315905

RESUMEN

BACKGROUND: The etiology of postpartum psychopathologies are not well understood, but folate metabolism pathways are of potential interest. Demands for folate increase dramatically during pregnancy, low folate level has been associated with psychiatric disorders, and supplementation may improve symptomatology. The MTHFR C677T variant influences folate metabolism and has been implicated in depression during pregnancy. OBJECTIVE: To conduct a prospective longitudinal study to explore the relationship between MTHFR C677T genotype, folate levels, and postpartum psychopathology in at-risk women. HYPOTHESIS: In the first three months postpartum, folate will moderate a relationship between MTHFR genotype and depression, with TT homozygous women having more symptoms than CC homozygous women. METHODS: We recruited 365 pregnant women with a history of mood or psychotic disorder, and at 3 postpartum timepoints, administered the Edinburgh Postnatal Depression Scale (EPDS); Clinician-Administered Rating Scale for Mania (CARS-M) and the Positive and Negative Symptom Scale (PANSS) and drew blood for genotype/folate level analysis. We used robust linear regression to investigate interactions between genotype and folate level on the highest EPDS and CARS-M scores, and logistic regression to explore interactions with PANSS psychosis scores above/below cut-off. RESULTS: There was no significant interaction effect between MTHFR genotype and folate level on highest EPDS (p = 0.36), but there was a significant interaction between genotype, folate level and log(CARS-M) (p = 0.02); post-hoc analyses revealed differences in the effect of folate level between CC/CT, and TT genotypes, with folate level in CC and CT having an inverse relationship with symptoms of mania, while there was no relationship in participants with TT genotype. There was no significant interaction between MTHFR genotype and folate level on the likelihood of meeting positive symptom criteria for psychosis on the PANSS (p = 0.86). DISCUSSION: These data suggest that perhaps there is a relationship between MTHFR C677T, folate level and some symptoms of postpartum psychopathology.


Asunto(s)
Depresión Posparto/genética , Ácido Fólico/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Periodo Posparto/genética , Adulto , Alelos , Depresión Posparto/sangre , Depresión Posparto/patología , Depresión Posparto/psicología , Femenino , Ácido Fólico/sangre , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Estudios Longitudinales , Manía/genética , Manía/patología , Manía/psicología , Persona de Mediana Edad , Periodo Posparto/psicología , Embarazo , Estudios Prospectivos , Trastornos Psicóticos/genética , Trastornos Psicóticos/patología , Trastornos Psicóticos/psicología , Factores de Riesgo , Adulto Joven
5.
J Nutr ; 150(3): 518-525, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31754697

RESUMEN

BACKGROUND: Long-chain n-6 and n-3 PUFAs are important for growth and development. However, little is known about requirements and current dietary intakes of these fatty acids in toddlers. OBJECTIVES: This study assessed dietary intakes of n-6 and n-3 PUFAs and determined the relation to circulating PUFAs in toddlers at ages 1 and 2 y. METHODS: This is a secondary analysis of data from toddlers enrolled in a double-blind randomized controlled trial of arachidonic acid (ARA) and DHA supplementation between ages 1 and 2 y. Dietary intakes of fatty acids were estimated by 3-d food records, and fatty acid composition in plasma total phospholipids, red blood cell phosphatidylethanolamine (PE), and phosphatidylcholine (PC) were assessed by GC at baseline in all subjects (n = 110; mean age 1.12 y; 64% male) and in the control subjects at 2 y (n = 43). RESULTS: The dietary intakes of ARA, EPA, and DHA at age 1 y (baseline) were [mean (median)] 36.8 (30.0), 16.0 (0.00), and 31.1 (10.0) mg/d, respectively. Dietary intakes increased to 52.7 (45.0), 35.8 (0.00), and 64.8 (20.0) mg/d, respectively, at age 2 y (P < 0.05). The predominant dietary source of EPA and DHA was fish/seafood; eggs were an important source of ARA and DHA. Dietary DHA intakes were positively associated with plasma PE and PC DHA (P < 0.05). No relations between dietary ARA intakes and plasma PE and PC ARA (P > 0.05) were observed. CONCLUSIONS: These findings suggest that most toddlers are not meeting the recommendation for dietary PUFA intakes and that higher dietary DHA intakes are reflected in plasma PE and PC DHA composition. Further work is required to investigate a biomarker for dietary ARA intake. This trial is registered at clinicaltrials.gov as NCT01263912.


Asunto(s)
Ácido Araquidónico/sangre , Dieta , Ácidos Docosahexaenoicos/sangre , Ingesta Diaria Recomendada , Biomarcadores/sangre , Preescolar , Método Doble Ciego , Femenino , Humanos , Lactante , Masculino , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
Sci Rep ; 8(1): 15277, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30323309

RESUMEN

Human milk contains nutritional, immunoprotective and developmental components that support optimal infant growth and development. The milk fat globule membrane (MFGM) is one unique component, comprised of a tri-layer of polar lipids, glycolipids, and proteins, that may be important for brain development. MFGM is not present in most infant formulas. We tested the effects of bovine MFGM supplementation on reflex development and on brain lipid and metabolite composition in rats using the "pup in a cup" model. From postnatal d5 to d18, rats received either formula supplemented with MFGM or a standard formula without MFGM; a group of mother-reared animals was used as reference/control condition. Body and brain weights did not differ between groups. MFGM supplementation reduced the gap in maturation age between mother-reared and standard formula-fed groups for the ear and eyelid twitch, negative geotaxis and cliff avoidance reflexes. Statistically significant differences in brain phospholipid and metabolite composition were found at d13 and/or d18 between mother-reared and standard formula-fed groups, including a higher phosphatidylcholine:phosphatidylethanolamine ratio, and higher phosphatidylserine, glycerol-3 phosphate, and glutamine in mother-reared compared to formula-fed pups. Adding MFGM to formula narrowed these differences. Our study demonstrates that addition of bovine MFGM to formula promotes reflex development and alters brain phospholipid and metabolite composition. Changes in brain lipid metabolism and their potential functional implications for neurodevelopment need to be further investigated in future studies.


Asunto(s)
Química Encefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Alimentos Formulados , Glucolípidos/administración & dosificación , Glicoproteínas/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Reflejo/efectos de los fármacos , Alimentación Animal/análisis , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Suplementos Dietéticos , Femenino , Glucolípidos/farmacología , Glicoproteínas/farmacología , Gotas Lipídicas , Lípidos de la Membrana/administración & dosificación , Lípidos de la Membrana/farmacología , Embarazo , Ratas , Ratas Sprague-Dawley , Reflejo/fisiología
7.
Curr Dev Nutr ; 2(8): nzy055, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30140787

RESUMEN

BACKGROUND: The naturally occurring α-tocopherol (α-T) stereoisomer, RRR-α-tocopherol (RRR-α-T), is known to be more bioactive than all-rac-α-tocopherol (all-rac-α-T), a synthetic racemic mixture of 8 stereoisomers. There is widespread use of all-rac-α-T in maternal supplements. OBJECTIVE: The aim of the study was to thoroughly describe the α-T stereoisomer profile of human milk. METHODS: We measured the α-T stereoisomer profile in milk from 2 cohorts of women: a cohort of 121 women who provided milk on days 30 and 60 of lactation (study 1) and a separate cohort of 51 women who provided milk on days 10, 21, 71, and 120 of lactation (study 2). RESULTS: RRR-α-T was the predominant stereoisomer (P < 0.0001) in all samples in both studies despite a large intrasubject range in total α-T (0.7-22 µg/mL). On average, RRR-α-T comprised 73-76% of total α-T, but average values for the synthetic stereoisomers were RRS, 8-14%; RSR, 6-8%; RSS, 5-6%; and the sum of 2S stereoisomers (Σ2S), 3-5%. Despite the predominance of RRR-α-T, the sum of the synthetic stereoisomers comprised as much as 48% of total α-T. We calculated the ratio of RRR to the sum of the synthetic 2R (RRS + RSR + RSS) stereoisomers (s2R) to assess the degree to which RRR is favored in milk. Consistent with discrimination among 2R stereoisomers in mammary tissue, RRR/s2R values ranged from 2.8 to 3.6, as opposed to the expected ratio of 0.33 if there was no discrimination. However, the RRR to s2R ratio did not correlate with milk α-T concentration, but both components of the ratio did. CONCLUSIONS: RRR-α-T is the predominant stereoisomer in human milk, concentrations of synthetic 2R stereoisomers were notable, and the relation between milk total α-T and stereoisomer profile is complex. Due to the wide range found in milk α-T stereoisomer profile, investigation into its impact on α-T status and functional outcomes in breastfed infants is warranted.

8.
J Nutr ; 148(8): 1309-1314, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29986040

RESUMEN

Background: Choline is an important nutrient during development. However, there are limited data on dietary choline intake and status in toddlers and the relation to neurodevelopmental outcomes. Objective: This study assessed dietary choline intake and status in healthy toddlers at ages 1 and 2 y and determined the relation to neurodevelopmental outcomes. Methods: This is a secondary analysis of data from healthy toddlers enrolled in a double-blind, randomized controlled trial of long-chain polyunsaturated fatty acid supplementation between ages 1 and 2 y. Dietary intakes of betaine and choline were estimated by 3-d food records; plasma free choline, betaine, and dimethylglycine were quantified by liquid chromatography-tandem mass spectrometry. Developmental outcomes were assessed at age 2 y with the use of the Bayley Scales of Infant and Toddler Development, 3rd edition (Bayley-III), Cognitive and Language composites, and the Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery-VMI). Results: The mean ± SD daily intake for total choline at age 1 y was 174 ± 56.2 mg/d and increased (P < 0.001) to 205 ± 67.5 mg/d at age 2 y. At ages 1 and 2 y, 71.8% and 55.8%, respectively, of toddlers did not meet the recommended 200-mg/d Adequate Intake (AI) for dietary choline. At age 1 y, mean ± SD plasma free choline, betaine, and dimethylglycine concentrations were 10.4 ± 3.3, 41.1 ± 15.4, and 4.1 ± 1.9 µmol/L, respectively. Plasma free choline (8.5 ± 2.3 µmol/L) and dimethylglycine (3.2 ± 1.3 µmol/L) concentrations were lower (P < 0.001) at age 2 y. Plasma betaine concentrations were positively associated with the Beery-VMI (ß = 0.270; 95% CI: 0.026, 0.513; P = 0.03) at age 2 y. Conclusions: These findings suggest that most toddlers are not meeting the recommended AI for dietary choline and that higher plasma betaine concentrations are associated with better visual-motor development at age 2 y. Further work is required to investigate choline metabolism and its role in neurodevelopment in toddlers. The trial is registered at clinicaltrials.gov as NCT01263912.


Asunto(s)
Betaína/sangre , Desarrollo Infantil , Colina/administración & dosificación , Dieta , Estado Nutricional , Preescolar , Colina/metabolismo , Método Doble Ciego , Femenino , Humanos , Lactante , Masculino , Necesidades Nutricionales , Ingesta Diaria Recomendada , Sarcosina/análogos & derivados , Sarcosina/metabolismo
9.
Nutrients ; 10(3)2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29558412

RESUMEN

Choline has critical roles during periods of rapid growth and development, such as infancy. In human milk, choline is mostly present in water-soluble forms (free choline, phosphocholine, and glycerophosphocholine). It is thought that milk choline concentration is influenced by maternal choline intake, and the richest food sources for choline are of animal origin. Scarce information exists on milk choline from countries differing in animal-source food availability. In this secondary analysis of samples from previous trials, the concentrations of the water-soluble forms of choline were quantified by liquid chromatography-tandem mass spectrometry in mature milk samples collected from lactating women in Canada (n = 301) and in Cambodia (n = 67). None of the water-soluble forms of choline concentrations in milk differed between Canada and Cambodia. For all milk samples (n = 368), free choline, phosphocholine, glycerophosphocholine, and the sum of water-soluble forms of choline concentrations in milk were (mean (95%CI)) 151 (141, 160, 540 (519, 562), 411 (396, 427), and 1102 (1072, 1133) µmol/L, respectively. Theoretically, only 19% of infants would meet the current Adequate Intake (AI) for choline. Our findings suggest that the concentrations in milk of water-soluble forms of choline are similar in Canada and Cambodia, and that the concentration used to set the infant AI might be inaccurate.


Asunto(s)
Colina/análisis , Lactancia , Leche Humana/química , Solventes/química , Agua/química , Adolescente , Adulto , Cambodia , Canadá , Cromatografía Liquida , Estudios Transversales , Femenino , Humanos , Lactante , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido , Persona de Mediana Edad , Estado Nutricional , Ensayos Clínicos Controlados Aleatorios como Asunto , Ingesta Diaria Recomendada , Solubilidad , Espectrometría de Masas en Tándem , Adulto Joven
10.
Nutrients ; 9(9)2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878181

RESUMEN

Little is known about arachidonic acid (ARA) and docosahexaenoic acid (DHA) requirements in toddlers. A longitudinal, double blind, controlled trial in toddlers ( n = 133) age 13.4 ± 0.9 months (mean ± standard deviation), randomized to receive a DHA (200 mg/day) and ARA (200 mg/day) supplement (supplement) or a corn oil supplement (control) until age 24 months determined effects on neurodevelopment. We found no effect of the supplement on the Bayley Scales of Infant and Toddler Development 3rd Edition (Bayley-III) cognitive and language composites and Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI) at age 24 months. Supplemented toddlers had higher RBC phosphatidylcholine (PC), phosphatidylethanolamine (PE), and plasma DHA and ARA compared to placebo toddlers at age 24 months. A positive relationship between RBC PE ARA and Bayley III Cognitive composite (4.55 (0.21-9.00), B (95% CI), p = 0.045) in supplemented boys, but not in control boys, was observed in models adjusted for baseline fatty acid, maternal non-verbal intelligence, and BMI z-score at age 24 months. A similar positive relationship between RBC PE ARA and Bayley III Language composite was observed for supplemented boys (11.52 (5.10-17.94), p < 0.001) and girls (11.19 (4.69-17.68), p = 0.001). These findings suggest that increasing the ARA status in toddlers is associated with better neurodevelopment at age 24 months.


Asunto(s)
Ácido Araquidónico/administración & dosificación , Desarrollo Infantil , Ácidos Docosahexaenoicos/administración & dosificación , Factores de Edad , Ácido Araquidónico/efectos adversos , Ácido Araquidónico/sangre , Colombia Británica , Lenguaje Infantil , Preescolar , Cognición , Suplementos Dietéticos/efectos adversos , Ácidos Docosahexaenoicos/efectos adversos , Ácidos Docosahexaenoicos/sangre , Método Doble Ciego , Eritrocitos/metabolismo , Femenino , Humanos , Lactante , Inteligencia , Masculino , Fosfatidilcolinas/sangre , Fosfatidiletanolaminas/sangre , Estudios Prospectivos , Desempeño Psicomotor , Factores de Tiempo , Resultado del Tratamiento
11.
J Psychiatr Res ; 95: 135-142, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28843843

RESUMEN

Brain imaging suggests that white matter abnormalities, including compromised white matter integrity in the frontal lobe, are shared across bipolar disorder (BD) and schizophrenia (SCZ). However, the precise molecular and cellular correlates remain to be elucidated. Given evidence for widespread alterations in cell membrane lipid composition in both disorders, we sought to investigate whether lipid composition is disturbed in frontal white matter in SCZ and BD. The phospholipids phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were quantified in white matter adjacent to the dorsolateral prefrontal cortex in subjects with BD (n = 34), SCZ (n = 35), and non-psychiatric controls (n = 35) using high-pressure liquid chromatography. Individual fatty acid species and plasmalogens were then quantified separately in PE and PC fractions by gas liquid chromatography. PC was significantly lower in the BD group, compared to controls. The fatty acids PE22:0, PE24:1 and PE20:2n6 were higher, and PC20:4n6, PE22:5n6 and PC22:5n6 lower in the BD group, relative to the control group. PE22:1 was higher and PC20:3n6, PE22:5n6 and PC22:5n6 lower in the SCZ group, compared to the control group. These data provide evidence for altered lipid composition in white matter in both BD and SCZ. Changes in white matter lipid composition could ultimately contribute to dysfunction of frontal white matter circuits in SCZ and BD.


Asunto(s)
Trastorno Bipolar/metabolismo , Ácidos Grasos/metabolismo , Lóbulo Frontal/metabolismo , Fosfatidilcolinas/metabolismo , Plasmalógenos/metabolismo , Esquizofrenia/metabolismo , Sustancia Blanca/metabolismo , Adulto , Autopsia , Trastorno Bipolar/patología , Femenino , Lóbulo Frontal/patología , Humanos , Masculino , Persona de Mediana Edad , Fosfatidiletanolaminas/metabolismo , Esquizofrenia/patología , Sustancia Blanca/patología
12.
Sci Rep ; 7: 45274, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28349941

RESUMEN

Breast milk has many beneficial properties and unusual characteristics including a unique fat component, termed milk fat globule membrane (MFGM). While breast milk yields important developmental benefits, there are situations where it is unavailable resulting in a need for formula feeding. Most formulas do not contain MFGM, but derive their lipids from vegetable sources, which differ greatly in size and composition. Here we tested the effects of MFGM supplementation on intestinal development and the microbiome as well as its potential to protect against Clostridium difficile induced colitis. The pup-in-a-cup model was used to deliver either control or MFGM supplemented formula to rats from 5 to 15 days of age; with mother's milk (MM) reared animals used as controls. While CTL formula yielded significant deficits in intestinal development as compared to MM littermates, addition of MFGM to formula restored intestinal growth, Paneth and goblet cell numbers, and tight junction protein patterns to that of MM pups. Moreover, the gut microbiota of MFGM and MM pups displayed greater similarities than CTL, and proved protective against C. difficile toxin induced inflammation. Our study thus demonstrates that addition of MFGM to formula promotes development of the intestinal epithelium and microbiome and protects against inflammation.


Asunto(s)
Microbioma Gastrointestinal , Intestinos/efectos de los fármacos , Lípidos de la Membrana/farmacología , Leche/química , Animales , Suplementos Dietéticos , Células Epiteliales/química , Células Epiteliales/metabolismo , Femenino , Humanos , Intestinos/crecimiento & desarrollo , Intestinos/microbiología , Masculino , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/metabolismo , Lípidos de la Membrana/administración & dosificación , Lípidos de la Membrana/análisis , Ratas , Ratas Sprague-Dawley
13.
Am J Clin Nutr ; 98(5): 1209-17, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24004892

RESUMEN

BACKGROUND: Choline needs are increased in pregnancy. Choline can be used as a source of methyl for homocysteine remethylation to methionine, but choline synthesis requires methyls from methionine. Vitamin B-12 deficiency increases choline use for homocysteine methylation. OBJECTIVES: We investigated whether poor vitamin B-12 status occurs and contributes to low plasma choline and altered biomarkers of choline synthesis in pregnant women. With the use of a post hoc analysis, we addressed the association of maternal plasma vitamin B-12 status with postnatal growth rates in term infants. DESIGN: Blood was analyzed for a prospective study of 264 and 220 pregnant women at 16 and 36 wk of gestation, respectively, and 88 nonpregnant women as a reference. RESULTS: The proportion of women with a plasma total vitamin B-12 concentration <148 pmol/L (deficient) or 148-220 pmol/L (marginal) increased with pregnancy and pregnancy duration, which affected 3% and 9% of nonpregnant women, 10% and 21% of women at 16 wk of gestation, and 23% and 35% of women at 36 wk of gestation, respectively. Plasma free choline, betaine, and dimethylglycine were lower in women at 36 wk of gestation with a deficient or marginal compared with sufficient plasma total vitamin B-12 concentration (>220 pmol/L). Plasma total vitamin B-12 was positively associated with the increase in plasma free choline from midgestation to late gestation (P < 0.001). The postnatal growth rate to 9 mo was lower in infant boys of women classified as total vitamin B-12 deficient compared with sufficient. CONCLUSION: This study shows that maternal vitamin B-12 status is related to choline status in late gestation in a folate-replete population and may be a determinant of infant growth even in the absence of undernutrition.


Asunto(s)
Desarrollo Infantil/efectos de los fármacos , Colina/sangre , Embarazo/sangre , Deficiencia de Vitamina B 12/sangre , Vitamina B 12/sangre , Adulto , Betaína/sangre , Colombia Británica , Suplementos Dietéticos , Femenino , Ácido Fólico/sangre , Humanos , Lactante , Masculino , Metionina/metabolismo , Persona de Mediana Edad , Estudios Prospectivos , Sarcosina/análogos & derivados , Sarcosina/sangre , Vitamina B 12/administración & dosificación , Adulto Joven
14.
Neurosci Lett ; 551: 7-11, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23872044

RESUMEN

Fetal alcohol spectrum disorders result in long-lasting neurological deficits including decreases in synaptic plasticity and deficits in learning and memory. In this study we examined the effects of prenatal ethanol exposure on hippocampal synaptic plasticity in male and female Sprague-Dawley rats. Furthermore, we looked at the capacity for postnatal dietary intervention to rescue deficits in synaptic plasticity. Animals were fed an omega-3 enriched diet from birth until adulthood (PND55-70) and in vivo electrophysiology was performed by stimulating the medial perforant path input to the dentate gyrus and recording field excitatory post-synaptic potentials. LTP was induced by administering bursts of five 400 Hz pulses as a theta-patterned train of stimuli (200 ms inter-burst interval). Ethanol-exposed adult males, but not females, exhibited a significant reduction in LTP. This deficit in male animals was completely reversed with an omega-3 enriched diet. These results demonstrate that omega-3 fatty acids can have benefits following prenatal neuropathological insults and may be a viable option for alleviating some of the neurological deficits associated with FASD.


Asunto(s)
Etanol/toxicidad , Ácidos Grasos Omega-3/uso terapéutico , Hipocampo/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Animales , Femenino , Hipocampo/efectos de los fármacos , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley
15.
Am J Clin Nutr ; 97(6): 1217-27, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23576045

RESUMEN

BACKGROUND: Animal models show that periconceptional supplementation with folic acid, vitamin B-12, choline, and betaine can induce differences in offspring phenotype mediated by epigenetic changes in DNA. In humans, altered DNA methylation patterns have been observed in offspring whose mothers were exposed to famine or who conceived in the Gambian rainy season. OBJECTIVE: The objective was to understand the seasonality of DNA methylation patterns in rural Gambian women. We studied natural variations in dietary intake of nutrients involved in methyl-donor pathways and their effect on the respective metabolic biomarkers. DESIGN: In 30 women of reproductive age (18-45 y), we monitored diets monthly for 1 y by using 48-h weighed records to measure intakes of choline, betaine, folate, methionine, riboflavin, and vitamins B-6 and B-12. Blood biomarkers of these nutrients, S-adenosylhomocysteine (SAH), S-adenosylmethionine (SAM), homocysteine, cysteine, and dimethylglycine were also assessed monthly. RESULTS: Dietary intakes of riboflavin, folate, choline, and betaine varied significantly by season; the most dramatic variation was seen for betaine. All metabolic biomarkers showed significant seasonality, and vitamin B-6 and folate had the highest fluctuations. Correlations between dietary intakes and blood biomarkers were found for riboflavin, vitamin B-6, active vitamin B-12 (holotranscobalamin), and betaine. We observed a seasonal switch between the betaine and folate pathways and a probable limiting role of riboflavin in these processes and a higher SAM/SAH ratio during the rainy season. CONCLUSIONS: Naturally occurring seasonal variations in food-consumption patterns have a profound effect on methyl-donor biomarker status. The direction of these changes was consistent with previously reported differences in methylation of metastable epialleles. This trial was registered at www.clinicaltrials.gov as NCT01811641.


Asunto(s)
Biomarcadores/sangre , Metilación de ADN , Dieta , Conducta Alimentaria , Población Rural , Adolescente , Adulto , Betaína/administración & dosificación , Betaína/sangre , Colina/administración & dosificación , Colina/sangre , Cisteína/sangre , Registros de Dieta , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Femenino , Ácido Fólico/administración & dosificación , Ácido Fólico/sangre , Gambia , Homocisteína/sangre , Humanos , Modelos Lineales , Metionina/administración & dosificación , Metionina/sangre , Persona de Mediana Edad , Evaluación Nutricional , Estudios Prospectivos , Riboflavina/administración & dosificación , Riboflavina/sangre , S-Adenosilhomocisteína/sangre , S-Adenosilmetionina/sangre , Sarcosina/análogos & derivados , Sarcosina/sangre , Vitamina B 12/administración & dosificación , Vitamina B 12/sangre , Vitamina B 6/administración & dosificación , Vitamina B 6/sangre , Adulto Joven
16.
Br J Nutr ; 109(5): 936-43, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22691303

RESUMEN

Several studies have investigated the potential health benefits, including those associated with neurological function, of the n-3 fatty acid DHA. This has arisen in part because of the association between higher intakes of fish, which is a major dietary source of DHA, and reduced disease risk. In addition to DHA, fish also provides choline and vitamin D. The objective of the present study was to assess whether women in the first half of pregnancy with low fish intake also had low blood concentrations of vitamin D, choline and DHA. A total of 222 pregnant women at 16 weeks of gestation were examined for dietary intake, erythrocyte (phosphatidylethanolamine PE) DHA, plasma free choline and 25-hydroxyvitamin D (25(OH)D). Women who consumed ≤ 75 g fish/week (n 56) compared to ≥ 150 g fish/week (n 116) had lower dietary intake of DHA, total choline and vitamin D (P< 0·001), and lower erythrocyte PE DHA (5·25 (sd 1·27), 6·83 (sd 1·62) g/100 g total fatty acid, respectively, P< 0·01), plasma free choline (6·59 (sd 1·65), 7·40 (sd 2·05) µmol/l, respectively, P= 0·023) and 25(OH)D (50·3 (sd 20·0), 62·5 (sd 29·8) nmol/l, respectively, P< 0·01). DHA intake was positively related to the intake of vitamin D from foods (ρ 0·47, P< 0·001) and total choline (ρ 0·32, P< 0·001). Dietary intakes and biomarkers of DHA, choline and vitamin D status were assessed to be linked. This raises the possibility that unidentified concurrent nutrient inadequacies might have an impact on the results of studies addressing the benefits of supplemental DHA.


Asunto(s)
Colina/sangre , Dieta , Ácidos Docosahexaenoicos/sangre , Ácidos Grasos Omega-3/sangre , Peces , Vitamina D/sangre , Adulto , Animales , Eritrocitos/química , Femenino , Edad Gestacional , Humanos , Fenómenos Fisiologicos Nutricionales Maternos , Estado Nutricional , Embarazo
17.
Brain Res ; 1237: 136-45, 2008 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-18710653

RESUMEN

Docosahexaenoic acid (DHA, 22:6omega-3) is a major polyunsaturated fatty acid in the brain and is required in large amounts during development. Low levels of DHA in the brain are associated with functional deficits. The omega-3 fatty acids are essential nutrients and their metabolism and incorporation in developing brain depends on the composition of dietary fat. We assessed the importance of the intake of the omega-3 fatty acid, 18:3omega-3 and the balance with the omega-6 fatty acid, 18:2omega-6, and the effects of dietary arachidonic acid (20:4omega-6) and DHA in milk diets using the piglet as a model of early infant nutrition. Piglets were fed (% energy) 1.2% 18:2omega-6 and 0.05% 18:3omega-3 (deficient), 10.7% 18:2omega-6 and 1.1% 18:3omega-3 (contemporary), 1.2% 18:2omega-6 and 1.1% 18:3omega-3 (evolutionary), or the contemporary diet with 0.3% 20:4omega-6 and 0.3% DHA (supplemented) from birth to 30 days of age. Our results show that a contemporary diet, high in 18:2omega-6 compromises DHA accretion and leads to increased 22:4omega-6 and 22:5omega-6 in the brain. However, an evolutionary diet, low in 18:2omega-6, supports high brain DHA. DHA supplementation effectively increased DHA, but not the intermediate omega-3 fatty acids, 20:5omega-3 and 22:5omega-3. Using primary cultures of cortical neurons, we show that 22:5omega-6 is efficiently acylated and preferentially taken up over DHA. However, DHA, but not 22:5omega-6 supports growth of secondary neurites. Our results suggest the need to consider whether current high dietary omega-6 fatty acid intakes compromise brain DHA accretion and contribute to poor neurodevelopment.


Asunto(s)
Encéfalo , Suplementos Dietéticos , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos Omega-6/administración & dosificación , Neuritas/efectos de los fármacos , Factores de Edad , Animales , Animales Recién Nacidos , Ácido Araquidónico , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Masculino , Neuritas/fisiología , Neuronas/citología , Porcinos , Distribución Tisular
18.
J Lipid Res ; 43(9): 1529-36, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12235185

RESUMEN

The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/metabolismo , Animales , Células Cultivadas , Conejos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA