Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684469

RESUMEN

Although the use of synthetic chemicals is the principal method for insect pest management, their widespread application has led to numerous side effects, including environmental pollution and threats to human and animal health. Plant essential oils have been introduced as promising natural substitutes for synthetic insecticides. However, high volatility and/or low durability are the main limiting factors for essential oil application for control of insect pests. Accordingly, along with an evaluation of the fumigant toxicity of Eucalyptus largiflorens essential oil against the cowpea weevil, Callosobruchus maculatus, essential oil was nanoencapsulated by two mesoporous silicates, MCM-41 and zeolite 3A, to enhance fumigant persistence and toxicity. The chemical profile of essential oil was also analyzed through gas chromatographic-mass spectrometry. E. largiflorens essential oil showed significant concentration-dependent toxicity against insect pests; a concentration of 5.16 µL/L resulted in 100% mortality after 48 h. The toxicity of essential oil could be attributed to the presence of various insecticidal terpenes, such as spathulenol (15.6%), cryptone (7.0%), and 1,8-cineole (5.8%). Fumigant persistence was increased from 6 days to 19 and 17 days for pure and capsulated essential oil with MCM-41 and Zeolite 3A, respectively. The insect mortality also increased from 99 insects in pure essential oil to 178 and 180 insects in MCM-41 and Zeolite 3A encapsulated formulations, respectively. Therefore, the encapsulation of E. largiflorens essential oil by MCM- 41 and Zeolite 3A is a beneficial method for enhancing its persistence and toxicity against C. maculatus.


Asunto(s)
Escarabajos , Eucalyptus , Insecticidas , Aceites Volátiles , Vigna , Gorgojos , Zeolitas , Animales , Aceite de Eucalipto/farmacología , Insecticidas/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Zeolitas/farmacología
2.
Molecules ; 27(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35164055

RESUMEN

Rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae), is one of the most destructive stored-product pests that is resistant to a wide range of chemical insecticides. In the present study, we investigated whether a lectin extracted from Polygonum persicaria L. (PPA) can be used as a biorational agent to control such insect pests. Along with the lethal digestive assay, the sub-lethal insecticidal activities of PPA, including the effects on digestive, detoxifying, and antioxidant enzyme activities, were evaluated against S. oryzae adults. The effect of feeding a diet containing PPA and carob extract as a food attractant on the mortality of S. oryzae adults was also investigated. Feeding on the diet containing PPA resulted in a significant mortality of S. oryzae adults with a LC50 (Lethal Concentration to kill 50% of insects) of 3.68% (w/w). The activity of digestive enzymes, including α-amylase, α-glucosidase, TAG-lipase, trypsin, chymotrypsin, elastase, and carboxy- and aminopeptidase, were decreased by the sub-lethal concentration of PPA. Detoxifying and antioxidant enzymes, including esterase, superoxide dismutase, catalase, glutathione-S-transferase, ascorbate peroxidase, glucose 6-phosphate dehydrogenase, and malondialdehyde, were activated in adults affected by PPA. These findings indicated that PPA, in addition to causing digestive disorders, leads to oxidative stress in S. oryzae. The presence of carob extract had no effect on the PPA-induced mortality of the insect. According to the results of the present study, PPA has promising insecticidal efficiency against S. oryzae. In addition, the usage of PPA with a food attractant carob extract in bait traps can be recommended as a new biorational formulation in S. oryzae management.


Asunto(s)
Insecticidas/farmacología , Lectinas/farmacología , Extractos Vegetales/farmacología , Polygonum/química , Gorgojos/efectos de los fármacos , Animales , Activación Enzimática/efectos de los fármacos , Insecticidas/aislamiento & purificación , Lectinas/aislamiento & purificación , Estrés Oxidativo/efectos de los fármacos
3.
Pestic Biochem Physiol ; 170: 104702, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32980062

RESUMEN

Botanical extracts are an important source of bio-pesticides and are generally considered safe to the environment. Artemisia annua L, a medicinal plant, well known for its antimalarial potential, was evaluated as a source of a type of essential oil collected during vegetative growth stage against Glyphodes pyloalis Walker. The main chemical components of the essential oil at vegetative stage of Artemisia annua was analyzed by GC- MS and contained 1,8-cineole (18.68%), Camphor (11.4%), α-Pinene (9.3%) and 3-Carene (6.3%). The LC50 of this plant oil was estimated to be 0.652% W/V and 2.585 µL/L air incorporated orally and fumigation, respectively. The digestive enzymes such as α-amylases, Proteases, Lipases and α- and ß-glucosidases were considereably inhibited in treated larvae compared with controls. Similarly, the amount of protein, glucose, and triglyceride were decreased in the treated larvae by methods used. The lower hemocyte numbers, nodule formation and activity of phenoloxidases after injection of Beauveria bassiana and latex beads showed its EO effect on immunity. The anatomy of the larval midgut after treatment showed degeneration in digestive cells. Emerging adult's ovaries showed significant changes in the ovarian sheath and lack of yolk spheres. The present investigation in accordance with our previous studies may ultimately lead to a formulation in controlling this notorious pest especially in mulberry orchards where the use of conventional chemicals is restricted.


Asunto(s)
Artemisia annua , Morus , Mariposas Nocturnas , Aceites Volátiles/farmacología , Aceites Volátiles/toxicidad , Animales , Extractos Vegetales
4.
J Oleo Sci ; 66(3): 307-314, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28190801

RESUMEN

There is a rapid growth in the screening of plant materials for finding new bio-pesticides. In the present study, the essential oils of E. oleosa and E. torquata leaves were extracted using a Clevenger apparatus and their chemical profiles were investigated by Gas Chromatography-Mass Spectrometry (GC-MS). Among identified compounds, the terpenes had highest amount for both essential oils; 93.59% for E. oleosa and 97.69% for E. torquata. 1,8-Cineole (31.96%), α-pinene (15.25%) and trans-anethole (7.32%) in the essential oil of E. oleosa and 1,8-cineole (28.57%), α-pinene (15.74%) and globulol (13.11%) in the E. torquata essential oil were identified as the main components. The acaricidal activity of the essential oils of E. oleosa and E. torquata were examined using fumigation methods against the adult females of Tetranychus urticae Koch. The essential oils have potential acaricidal effects on T. urticae. The essential oil of E. oleosa with LC50 value of 2.42 µL/L air was stronger than E. torquata. A correlation between log concentration and mite mortality has been observed. Based on the results of present study, it can be stated that the essential oils of E. oleosa and E. torquata have a worthy potential in the management of T. urticae.


Asunto(s)
Acaricidas , Aceites de Plantas , Tetranychidae , Acaricidas/análisis , Acaricidas/aislamiento & purificación , Animales , Bioensayo , Eucalyptus , Cromatografía de Gases y Espectrometría de Masas , Irán , Modelos Lineales , Aceites de Plantas/análisis , Aceites de Plantas/aislamiento & purificación , Terpenos/análisis , Terpenos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA