Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 133(2): e19-e46, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37313752

RESUMEN

BACKGROUND: Systemic defects in intestinal iron absorption, circulation, and retention cause iron deficiency in 50% of patients with heart failure. Defective subcellular iron uptake mechanisms that are independent of systemic absorption are incompletely understood. The main intracellular route for iron uptake in cardiomyocytes is clathrin-mediated endocytosis. METHODS: We investigated subcellular iron uptake mechanisms in patient-derived and CRISPR/Cas-edited induced pluripotent stem cell-derived cardiomyocytes as well as patient-derived heart tissue. We used an integrated platform of DIA-MA (mass spectrometry data-independent acquisition)-based proteomics and signaling pathway interrogation. We employed a genetic induced pluripotent stem cell model of 2 inherited mutations (TnT [troponin T]-R141W and TPM1 [tropomyosin 1]-L185F) that lead to dilated cardiomyopathy (DCM), a frequent cause of heart failure, to study the underlying molecular dysfunctions of DCM mutations. RESULTS: We identified a druggable molecular pathomechanism of impaired subcellular iron deficiency that is independent of systemic iron metabolism. Clathrin-mediated endocytosis defects as well as impaired endosome distribution and cargo transfer were identified as a basis for subcellular iron deficiency in DCM-induced pluripotent stem cell-derived cardiomyocytes. The clathrin-mediated endocytosis defects were also confirmed in the hearts of patients with DCM with end-stage heart failure. Correction of the TPM1-L185F mutation in DCM patient-derived induced pluripotent stem cells, treatment with a peptide, Rho activator II, or iron supplementation rescued the molecular disease pathway and recovered contractility. Phenocopying the effects of the TPM1-L185F mutation into WT induced pluripotent stem cell-derived cardiomyocytes could be ameliorated by iron supplementation. CONCLUSIONS: Our findings suggest that impaired endocytosis and cargo transport resulting in subcellular iron deficiency could be a relevant pathomechanism for patients with DCM carrying inherited mutations. Insight into this molecular mechanism may contribute to the development of treatment strategies and risk management in heart failure.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Deficiencias de Hierro , Humanos , Miocitos Cardíacos/metabolismo , Mutación , Cardiomiopatía Dilatada/genética , Células Madre Pluripotentes Inducidas/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Hierro/metabolismo , Clatrina/genética , Clatrina/metabolismo , Clatrina/farmacología
2.
Circ Res ; 115(6): 556-66, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25015077

RESUMEN

RATIONALE: Viral myocarditis is a life-threatening illness that may lead to heart failure or cardiac arrhythmias. A major causative agent for viral myocarditis is the B3 strain of coxsackievirus, a positive-sense RNA enterovirus. However, human cardiac tissues are difficult to procure in sufficient enough quantities for studying the mechanisms of cardiac-specific viral infection. OBJECTIVE: This study examined whether human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could be used to model the pathogenic processes of coxsackievirus-induced viral myocarditis and to screen antiviral therapeutics for efficacy. METHODS AND RESULTS: hiPSC-CMs were infected with a luciferase-expressing coxsackievirus B3 strain (CVB3-Luc). Brightfield microscopy, immunofluorescence, and calcium imaging were used to characterize virally infected hiPSC-CMs for alterations in cellular morphology and calcium handling. Viral proliferation in hiPSC-CMs was quantified using bioluminescence imaging. Antiviral compounds including interferonß1, ribavirin, pyrrolidine dithiocarbamate, and fluoxetine were tested for their capacity to abrogate CVB3-Luc proliferation in hiPSC-CMs in vitro. The ability of these compounds to reduce CVB3-Luc proliferation in hiPSC-CMs was consistent with reported drug effects in previous studies. Mechanistic analyses via gene expression profiling of hiPSC-CMs infected with CVB3-Luc revealed an activation of viral RNA and protein clearance pathways after interferonß1 treatment. CONCLUSIONS: This study demonstrates that hiPSC-CMs express the coxsackievirus and adenovirus receptor, are susceptible to coxsackievirus infection, and can be used to predict antiviral drug efficacy. Our results suggest that the hiPSC-CM/CVB3-Luc assay is a sensitive platform that can screen novel antiviral therapeutics for their effectiveness in a high-throughput fashion.


Asunto(s)
Antivirales/uso terapéutico , Enterovirus Humano B/aislamiento & purificación , Infecciones por Enterovirus/tratamiento farmacológico , Modelos Cardiovasculares , Miocarditis/tratamiento farmacológico , Miocitos Cardíacos/patología , Células Madre Pluripotentes/patología , Antivirales/farmacología , Calcio/metabolismo , Proliferación Celular , Células Cultivadas , Evaluación Preclínica de Medicamentos , Infecciones por Enterovirus/metabolismo , Humanos , Técnicas In Vitro , Miocarditis/metabolismo , Miocarditis/virología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/virología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/virología , ARN Viral/metabolismo , Resultado del Tratamiento
3.
Traffic ; 11(6): 813-26, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20230531

RESUMEN

Fibroblast growth factor 2 (FGF2) is a potent mitogen that is exported from cells by an endoplasmic reticulum (ER)/Golgi-independent mechanism. Unconventional secretion of FGF2 occurs by direct translocation across plasma membranes, a process that depends on the phosphoinositide phosphatidylinositol 4,5-biphosphate (PI(4,5)P(2)) at the inner leaflet as well as heparan sulfate proteoglycans at the outer leaflet of plasma membranes; however, additional core and regulatory components of the FGF2 export machinery have remained elusive. Here, using a highly effective RNAi screening approach, we discovered Tec kinase as a novel factor involved in unconventional secretion of FGF2. Tec kinase does not affect FGF2 secretion by an indirect mechanism, but rather forms a heterodimeric complex with FGF2 resulting in phosphorylation of FGF2 at tyrosine 82, a post-translational modification shown to be essential for FGF2 membrane translocation to cell surfaces. Our findings suggest a crucial role for Tec kinase in regulating FGF2 secretion under various physiological conditions and, therefore, provide a new perspective for the development of a novel class of antiangiogenic drugs targeting the formation of the FGF2/Tec complex.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Células 3T3 , Animales , Membrana Celular/metabolismo , Células HeLa , Humanos , Ratones , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/química , Fosforilación , Transporte de Proteínas , Proteínas/química , Interferencia de ARN , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA