Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Rep ; 11(1): 15319, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321581

RESUMEN

Inhibition of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome has recently emerged as a promising therapeutic target for several inflammatory diseases. After priming and activation by inflammation triggers, NLRP3 forms a complex with apoptosis-associated speck-like protein containing a CARD domain (ASC) followed by formation of the active inflammasome. Identification of inhibitors of NLRP3 activation requires a well-validated primary high-throughput assay followed by the deployment of a screening cascade of assays enabling studies of structure-activity relationship, compound selectivity and efficacy in disease models. We optimized a NLRP3-dependent fluorescent tagged ASC speck formation assay in murine immortalized bone marrow-derived macrophages and utilized it to screen a compound library of 81,000 small molecules. Our high-content screening assay yielded robust assay metrics and identified a number of inhibitors of NLRP3-dependent ASC speck formation, including compounds targeting HSP90, JAK and IKK-ß. Additional assays to investigate inflammasome priming or activation, NLRP3 downstream effectors such as caspase-1, IL-1ß and pyroptosis form the basis of a screening cascade to identify NLRP3 inflammasome inhibitors in drug discovery programs.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Inflamasomas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/biosíntesis , Células Cultivadas , Dimetilsulfóxido/farmacología , Descubrimiento de Drogas , Furanos/farmacología , Genes Reporteros , Indenos/farmacología , Interleucina-1beta/biosíntesis , Lipopolisacáridos/farmacología , Ratones , Nigericina/farmacología , Fenotipo , Piroptosis/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas , Sulfonamidas/farmacología
2.
Biochem Biophys Res Commun ; 531(4): 535-542, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32807492

RESUMEN

INTRODUCTION: Pre-clinical testing of small molecules for therapeutic development across many pathologies relies on the use of in-vitro and in-vivo models. When designed and implemented well, these models serve to predict the clinical outcome as well as the toxicity of the evaluated therapies. The two-dimensional (2D) reductionist approach where cells are incubated in a mono-layer on hard plastic microtiter plates is relatively inexpensive but not physiologically relevant. In contrast, well developed and applied three dimensional (3D) in vitro models could be employed to bridge the gap between 2D in vitro primary screening and expensive in vivo rodent models by incorporating key features of the tissue microenvironment to explore differentiation, cortical development, cancers and various neuronal dysfunctions. These features include an extracellular matrix, co-culture, tension and perfusion and could replace several hundred rodents in the drug screening validation cascade. METHODS: Human neural progenitor cells from middle brain (ReN VM, Merck Millipore, UK) were expanded as instructed by the supplier (Merck Millipore, UK), and then seeded in 96-well low-attachment plates (Corning, UK) to form multicellular spheroids followed by adding a Matrigel layer to mimic extracellular matrix around neural stem cell niche. ReN VM cells were then differentiated via EGF and bFGF deprivation for 7 days and were imaged at day 7. Radiotherapy was mimicked via gamma-radiation at 2Gy in the absence and presence of selected DYRK1A inhibitors Harmine, INDY and Leucettine 41 (L41). Cell viability was measured by AlamarBlue assay. Immunofluorescence staining was used to assess cell pluripotency marker SOX2 and differentiation marker GFAP. RESULTS: After 7 days of differentiation, neuron early differentiation marker (GFAP, red) started to be expressed among the cells expressing neural stem cell marker SOX2 (green). Radiation treatment caused significant morphology change including the reduced viability of the spheroids. These spheroids also revealed sensitizing potential of DYRK1A inhibitors tested in this study, including Harmine, INDY and L41. DISCUSSION & CONCLUSIONS: Combined with the benefit of greatly reducing the issues associated with in vivo rodent models, including reducing numbers of animals used in a drug screening cascade, cost, ethics, and potential animal welfare burden, we feel the well-developed and applied 3D neural spheroid model presented in this study will provide a crucial tool to evaluate combinatorial therapies, optimal drug concentrations and treatment dosages.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Células-Madre Neurales/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Esferoides Celulares/efectos de los fármacos , Línea Celular , Colágeno , Dioxoles/farmacología , Combinación de Medicamentos , Matriz Extracelular , Rayos gamma , Harmina/farmacología , Humanos , Imidazoles/farmacología , Laminina , Células-Madre Neurales/efectos de la radiación , Neuritas/efectos de los fármacos , Proteoglicanos , Fármacos Sensibilizantes a Radiaciones/farmacología , Factores de Transcripción SOXB1/metabolismo , Esferoides Celulares/efectos de la radiación , Quinasas DyrK
3.
Cancer Sci ; 108(12): 2422-2429, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28921785

RESUMEN

The treatment outcomes of patients with high-risk localized prostate cancer (PC) after carbon-ion radiotherapy (CIRT) combined with long-term androgen deprivation therapy (LTADT) were analyzed, and compared with those of other treatment modalities, focusing on PC-specific mortality (PCSM). A total of 1247 patients were enrolled in three phase II clinical trials of fixed-dose CIRT between 2000 and 2013. Excluding patients with T4 disease, 608 patients with high-risk or very-high-risk PC, according to the National Comprehensive Cancer Network classification system, who received CIRT with LTADT were evaluated. The median follow-up time was 88.4 months, and the 5-/10-year PCSM rates were 1.5%/4.3%, respectively. T3b disease, Gleason score of 9-10 and percentage of positive biopsy cores >75% were associated with significantly higher PCSM on univariate and multivariate analyses. The 10-year PCSM rates of patients having all three (n = 16), two (n = 74) or one of these risk factors (n = 217) were 27.1, 11.6 and 5.7%, respectively. Of the 301 patients with none of these factors, only 1 PCSM occurred over the 10-year follow-up (10-year PCSM rate, 0.3%), and significant differences were observed among the four stratified groups (P <0.001). CIRT combined with LTADT yielded relatively favorable treatment outcomes in patients with high-risk PC and very favorable results in patients without any of the three abovementioned factors for PCSM. Because a significant difference in PCSM among the high-risk PC patient groups was observed, new categorization and treatment intensity adjustment may be required for high-risk PC patients treated with CIRT.


Asunto(s)
Antagonistas de Andrógenos/administración & dosificación , Antineoplásicos/administración & dosificación , Radioterapia de Iones Pesados/métodos , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/terapia , Anciano , Anciano de 80 o más Años , Ensayos Clínicos Fase II como Asunto , Terapia Combinada , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
4.
Nat Rev Drug Discov ; 15(11): 751-769, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27616293

RESUMEN

The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell- and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Descubrimiento de Drogas/métodos , Modelos Biológicos , Animales , Línea Celular Transformada , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Preparaciones Farmacéuticas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA