Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 310(3): C193-204, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26538090

RESUMEN

The extracellular calcium-sensing receptor CaSR is expressed in blood vessels where its role is not completely understood. In this study, we tested the hypothesis that the CaSR expressed in vascular smooth muscle cells (VSMC) is directly involved in regulation of blood pressure and blood vessel tone. Mice with targeted CaSR gene ablation from vascular smooth muscle cells (VSMC) were generated by breeding exon 7 LoxP-CaSR mice with animals in which Cre recombinase is driven by a SM22α promoter (SM22α-Cre). Wire myography performed on Cre-negative [wild-type (WT)] and Cre-positive (SM22α)CaSR(Δflox/Δflox) [knockout (KO)] mice showed an endothelium-independent reduction in aorta and mesenteric artery contractility of KO compared with WT mice in response to KCl and to phenylephrine. Increasing extracellular calcium ion (Ca(2+)) concentrations (1-5 mM) evoked contraction in WT but only relaxation in KO aortas. Accordingly, diastolic and mean arterial blood pressures of KO animals were significantly reduced compared with WT, as measured by both tail cuff and radiotelemetry. This hypotension was mostly pronounced during the animals' active phase and was not rescued by either nitric oxide-synthase inhibition with nitro-l-arginine methyl ester or by a high-salt-supplemented diet. KO animals also exhibited cardiac remodeling, bradycardia, and reduced spontaneous activity in isolated hearts and cardiomyocyte-like cells. Our findings demonstrate a role for CaSR in the cardiovascular system and suggest that physiologically relevant changes in extracellular Ca(2+) concentrations could contribute to setting blood vessel tone levels and heart rate by directly acting on the cardiovascular CaSR.


Asunto(s)
Presión Sanguínea , Señalización del Calcio , Calcio/metabolismo , Hipotensión/metabolismo , Músculo Liso Vascular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vasoconstricción , Vasodilatación , Animales , Aorta/metabolismo , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/fisiopatología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Relación Dosis-Respuesta a Droga , Predisposición Genética a la Enfermedad , Frecuencia Cardíaca , Hipotensión/genética , Hipotensión/fisiopatología , Arterias Mesentéricas/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Miocitos Cardíacos/metabolismo , Fenotipo , Receptores Sensibles al Calcio , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Vasoconstricción/efectos de los fármacos , Vasoconstricción/genética , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatación/genética , Vasodilatadores/farmacología , Remodelación Ventricular
2.
Proc Natl Acad Sci U S A ; 96(5): 2473-8, 1999 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-10051667

RESUMEN

After periods of high-frequency firing, the normal rhythmically active serotonin (5HT)-containing neurosecretory neurons of the lobster ventral nerve cord display a period of suppressed spike generation and reduced synaptic input that we refer to as "autoinhibition." The duration of this autoinhibition is directly related to the magnitude and duration of the current injection triggering the high-frequency firing. More interesting, however, is that the autoinhibition is inversely related to the initial firing frequency of these cells within their normal range of firing (0.5-3 Hz). This allows more active 5HT neurons to resume firing after shorter durations of inhibition than cells that initially fired at slower rates. Although superfused 5HT inhibits the spontaneous firing of these cells, the persistence of autoinhibition in saline with no added calcium, in cadmium-containing saline, and in lobsters depleted of serotonin suggests that intrinsic membrane properties account for the autoinhibition. A similar autoinhibition is seen in spontaneously active octopamine neurons but is absent from spontaneously active gamma-aminobutyric acid cells. Thus, this might be a characteristic feature of amine-containing neurosecretory neurons. The 5HT cells of vertebrate brain nuclei share similarities in firing frequencies, spike shapes, and inhibition by 5HT with the lobster cells that were the focus of this study. However, the mechanism suggested to underlie autoinhibition in vertebrate neurons is that 5HT released from activated or neighboring cells acts back on inhibitory autoreceptors that are found on the dendrites and cell bodies of these neurons.


Asunto(s)
Neuronas/fisiología , Serotonina/fisiología , Animales , Electrofisiología , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Homeostasis , Técnicas In Vitro , Nephropidae , Neuronas/efectos de los fármacos , Serotonina/farmacología , Factores de Tiempo
3.
J Exp Biol ; 200(Pt 14): 2017-33, 1997 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9246785

RESUMEN

Serotonin-containing neurosecretory neurons in the first abdominal ganglion (A1 5-HT cells) of the lobster (Homarus americanus) ventral nerve cord have been shown previously to function as 'gain setters' in postural, slow muscle, command neuron circuitries. Here we show that these same amine neurons receive excitatory input from lateral (LG) and medial (MG) giant axons, which are major interneurons in phasic, fast muscle systems. Activation of either LG or MG axons elicits short-latency, non-fatiguing, long-lasting excitatory postsynaptic potentials (EPSPs) in A1 5-HT cells which follow stimulus frequencies of up to 100 Hz in a 1:1 fashion. Single spikes triggered in either giant axon can produce EPSPs in the A1 5-HT cells of sufficient magnitude to cause the cells to spike and to fire additional action potentials after variable latencies; action potentials elicited in this way reset the endogenous spontaneous spiking rhythm of the A1 5-HT neurons. The giant-axon-evoked EPSP amplitudes show substantial variation from animal to animal. In individual preparations, the variation of EPSP size from stimulus to stimulus was small over the first 25 ms of the response, but increased considerably in the later, plateau phase of each response. When tested in the same preparation, EPSPs in A1 5-HT cells evoked by firing the LG axons were larger, longer-lasting and more variable than those triggered by firing the MGs. Firing A1 5-HT cells through an intracellular electrode, prior to activation of the giant fiber pathway, significantly reduced the size of LG-evoked EPSPs in A1 5-HT cells. Finally, morphological and physiological results suggest that similarities exist between giant fiber pathways in lobsters and crayfish. The possible functional significance of an involvement of these large amine-containing neurosecretory neurons in both tonic and phasic muscle circuitries will be discussed.


Asunto(s)
Nephropidae/fisiología , Neuronas/citología , Neuronas/fisiología , Serotonina/fisiología , Animales , Electrofisiología , Nephropidae/citología
4.
J Physiol ; 348: 89-113, 1984 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-6716298

RESUMEN

A three-compartment model of the electrotonic structure of an identified motoneurone, the median gastric (m.g.) neurone of the stomatogastric ganglion of the spiny lobster (Panulirus interruptus) was constructed, based on the passive response of the cell to a step of injected current. While its structure is only remotely related to that of the cell, the model is able to predict the passive response of the cell to any wave form of injected current. The shape of the m.g. neurone provided the basis for the development of a multicompartment model of the cell from the simple compartment model. Unlike the three-compartment model, the multicompartment model has a structure that corresponds closely to that of the cell while it retains the ability to predict the passive response of the cell to any wave form of injected current. The multicompartment model was used to analyse the electrotonic structure and synaptic integration of the cell. The axon acts as a current sink, causing steady-state voltage attenuation between the tips of different dendrites and the integrating segment to range between 26 and 89%. Steady-state voltage attenuation in the distal direction is 2% or less. Synaptic inhibition of m.g. by Interneurone 1 was simulated with simultaneously activated conductance-increase synapses located on all dendritic end-compartments of the model. Inhibitory post-synaptic potential (i.p.s.p.) wave forms recorded in the cell soma were duplicated in the soma compartment when the synaptic conductance change in each of the twenty-eight end-compartments was set equal to 5 nS for 8 ms. I.p.s.p. wave forms in dendritic end-compartments were 30% larger than the soma compartment i.p.s.p., while i.p.s.p.s in the integrating segment compartment were intermediate in size. Charge from a 92 mV, 1 ms action potential in the model axon was passively conducted from axonal compartments to the soma compartment of the model, where it reproduced the attenuated, broadened voltage wave forms of action potentials recorded in the cell soma. Passive spread of charge from an axonal action potentials to terminal dendritic compartments evoked potentials there that were 30% larger and faster than the corresponding soma compartment potential.


Asunto(s)
Compartimento Celular , Modelos Neurológicos , Neuronas Motoras/fisiología , Sinapsis/fisiología , Potenciales de Acción , Animales , Computadores , Dendritas/fisiología , Conductividad Eléctrica , Estimulación Eléctrica , Nephropidae , Inhibición Neural
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA