Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Cancer Res ; 27(15): 4338-4352, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33994371

RESUMEN

PURPOSE: We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma. EXPERIMENTAL DESIGN: The effects of the drug combination on cancer growth were examined in vitro and in animal models of MYCN-amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction. RESULTS: The combination of CBL0137 and panobinostat enhanced nucleosome destabilization, induced an IFN response, inhibited DNA damage repair, and synergistically suppressed cancer cell growth. Similar synergistic effects were observed when combining CBL0137 with other HDAC inhibitors. The CBL0137/panobinostat combination significantly delayed cancer progression in xenograft models of poor outcome high-risk neuroblastoma. Complete tumor regression was achieved in the transgenic Th-MYCN neuroblastoma model which was accompanied by induction of a type I IFN and immune response. Tumor transplantation experiments further confirmed that the presence of a competent adaptive immune system component allowed the exploitation of the full potential of the drug combination. CONCLUSIONS: The combination of CBL0137 and panobinostat is effective and well-tolerated in preclinical models of aggressive high-risk neuroblastoma, warranting further preclinical and clinical investigation in other pediatric cancers. On the basis of its potential to boost IFN and immune responses in cancer models, the drug combination holds promising potential for addition to immunotherapies.


Asunto(s)
Carbazoles/administración & dosificación , Carbazoles/farmacología , Cromatina/efectos de los fármacos , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/farmacología , Neuroblastoma/tratamiento farmacológico , Panobinostat/administración & dosificación , Panobinostat/farmacología , Animales , Combinación de Medicamentos , Evaluación Preclínica de Medicamentos , Ratones , Células Tumorales Cultivadas
2.
Am J Cancer Res ; 6(2): 350-69, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27186409

RESUMEN

Intraperitoneal chemotherapy together with cytoreductive surgery is the standard of care for a number of peritoneal surface malignancies. However, this approach fails to maintain the complete response and disease recurs due to microscopic residual disease. Although safer than systemic chemotherapy regimens, locoregional treatment with chemotherapeutics can induce toxicity which is a major concern affecting the patient's treatment protocol and outcome. For an enhanced treatment efficacy, efforts should be made to maximize cytotoxic effects of chemotherapeutic agents on tumor cells while minimizing their toxic effects on host cells. Bromelain and N-acetylcysteine are two natural agents with good safety profiles shown to have anti-cancer effects. However, their interaction with chemotherapeutics is unknown. In this study, we investigated if these agents have the potential to sensitize in vitro gastrointestinal cancer models to cisplatin, paclitaxel, 5-fluorouracil, and vincristine. The drug-drug interaction was also analyzed. Our findings suggest that combination of bromelain and N-acetylcysteine with chemotherapeutic agents could give rise to an improved chemotherapeutic index in therapeutic approaches to peritoneal surface malignancies of gastrointestinal origin so that maximum benefits could result from less toxic and more patient-friendly doses. This represents a potentially efficacious strategy for the enhancement of microscopic cytoreduction and is a promising area for future research.

3.
Oncotarget ; 6(32): 33329-44, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26436698

RESUMEN

Aberrant expression of membrane-associated and secreted mucins, as evident in epithelial tumors, is known to facilitate tumor growth, progression and metastasis, and to provide protection against adverse growth conditions, chemotherapy and immune surveillance. Emerging evidence provides support for the oncogenic role of MUC1 in gastrointestinal carcinomas and relates its expression to an invasive phenotype. Similarly, mucinous differentiation of gastrointestinal tumors, in particular increased or de novo expression of MUC2 and/or MUC5AC, is widely believed to imply an adverse clinicopathological feature. Through formation of viscous gels, too, MUC2 and MUC5AC significantly contribute to the biology and pathogenesis of mucin-secreting gastrointestinal tumors. Here, we investigated the mucin-depleting effects of bromelain (BR) and N-acetylcysteine (NAC), in nine different regimens as single or combination therapy, in in vitro (MKN45, KATOIII and LS174T cell lines) and in vivo (female nude mice bearing intraperitoneal MKN45 and LS174T) settings. The inhibitory effects of the treatment on cancer cell growth and proliferation were also evaluated in vivo. Our results suggest that a combination of BR and NAC with dual effects on growth and mucin products of mucin-expressing tumor cells is a promising candidate towards the development of novel approaches to gastrointestinal malignancies with the involvement of mucin pathology. This capability supports the use of this combination formulation in locoregional approaches for reducing the adverse effects of the aberrantly secreted gel-forming mucins, as in pseudomyxoma peritonei and similar pathologies with ectopic production of mucin.


Asunto(s)
Acetilcisteína/uso terapéutico , Adenocarcinoma/tratamiento farmacológico , Bromelaínas/uso terapéutico , Neoplasias Gastrointestinales/tratamiento farmacológico , Mucinas/antagonistas & inhibidores , Acetilcisteína/administración & dosificación , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Bromelaínas/administración & dosificación , Femenino , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/patología , Humanos , Inyecciones Intraperitoneales , Ratones , Ratones Desnudos , Mucina 5AC/antagonistas & inhibidores , Mucina 2/antagonistas & inhibidores , Mucinas/genética , Mucinas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Exp Clin Cancer Res ; 33: 92, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25425315

RESUMEN

BACKGROUND: Bromelain and N-acetylcysteine are two natural, sulfhydryl-containing compounds with good safety profiles which have been investigated for their benefits and application in health and disease for more than fifty years. As such, the potential values of these agents in cancer therapy have been variably reported in the literature. In the present study, the efficacy of bromelain and N-acetylcysteine in single agent and combination treatment of human gastrointestinal carcinoma cells was evaluated in vitro and the underlying mechanisms of effect were explored. METHODS: The growth-inhibitory effects of bromelain and N-acetylcysteine, on their own and in combination, on a panel of human gastrointestinal carcinoma cell lines, including MKN45, KATO-III, HT29-5F12, HT29-5M21 and LS174T, were assessed by sulforhodamine B assay. Moreover, the influence of the treatment on the expression of a range of proteins involved in the regulation of cell cycle and survival was investigated by Western blot. The presence of apoptosis was also examined by TUNEL assay. RESULTS: Bromelain and N-acetylcysteine significantly inhibited cell proliferation, more potently in combination therapy. Drug-drug interaction in combination therapy was found to be predominantly synergistic or additive. Mechanistically, apoptotic bodies were detected in treated cells by TUNEL assay. Furthermore, Western blot analysis revealed diminution of cyclins A, B and D, the emergence of immunoreactive subunits of caspase-3, caspase-7, caspase-8 and cleaved PARP, withering or cleavage of procaspase-9, overexpression of cytochrome c, reduced expression of anti-apoptotic Bcl-2 and pro-survival phospho-Akt, the emergence of the autophagosomal marker LC3-II and deregulation of other autophagy-related proteins, including Atg3, Atg5, Atg7, Atg12 and Beclin 1. These results were more prominent in combination therapy. CONCLUSION: We report for the first time to our knowledge the growth-inhibitory and cytotoxic effects of bromelain and N-acetylcysteine, in particular in combination, on a panel of gastrointestinal cancer cell lines with different phenotypes and characteristics. These effects apparently resulted from cell cycle arrest, apoptosis and autophagy. Towards the development of novel strategies for the enhancement of microscopic cytoreduction, our results lay the basis for further evaluation of this formulation in locoregional approaches to peritoneal surface malignancies and carcinomatosis.


Asunto(s)
Acetilcisteína/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bromelaínas/farmacología , Neoplasias Gastrointestinales/tratamiento farmacológico , Acetilcisteína/administración & dosificación , Bromelaínas/administración & dosificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Neoplasias Gastrointestinales/patología , Células HT29 , Humanos
5.
Anticancer Drugs ; 25(2): 150-60, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24366282

RESUMEN

Malignant peritoneal mesothelioma (MPM) is a rare neoplasm of the peritoneum, causally related to asbestos exposure. Nonspecific symptoms with a late diagnosis results in poor survival (<1 year). Treatment with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy has improved survival in some patients (median 3-5 years). Hence, new therapies are urgently needed. MUC1 is a glycosylation-dependent protein that confers tumours with invasiveness, metastasis and chemoresistance. Bromelain (cysteine proteinase) hydrolyses glycosidic bonds. Therefore, we investigated the antitumour effect of bromelain on MUC1-expressing MPM cell lines. MUC1 expressions in cells were assessed using immunofluorescent probes with cells grown on cover slips and western blot analysis on cell lysates. The cell lines were treated with various concentrations of bromelain and after 4 and 72 h, their viability was assessed using standard sulforhodamine assays. The cells were also treated with combinations of bromelain and cytotoxic drugs (cisplatin or 5-FU) and their viability was assessed at 72 h. Finally, with western blotting, the effects of bromelain on cellular survival proteins were investigated. PET cells expressed more MUC1 compared with YOU cells. The cell viability of both PET and YOU cells was adversely affected by bromelain, with PET cells being slightly resistant. The addition of bromelain increased the cytotoxicity of cisplatin significantly in both cell lines. However, 5-FU with bromelain did not show any significant increase in cytotoxicity. Bromelain-induced cell death is by apoptosis and autophagy. Bromelain has the potential of being developed as a therapeutic agent in MPM.


Asunto(s)
Antineoplásicos/farmacología , Bromelaínas/farmacología , Cisplatino/farmacología , Fluorouracilo/farmacología , Mesotelioma/tratamiento farmacológico , Neoplasias Peritoneales/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Interacciones Farmacológicas , Humanos
6.
Onco Targets Ther ; 6: 403-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23620673

RESUMEN

BACKGROUND: Bromelain is a pineapple stem extract with a variety of therapeutic benefits arising from interaction with a number of different biological processes. Several preclinical studies and anecdotal clinical observations have reported the anticancer properties of bromelain. In the present study, we investigated the cytotoxic effects of bromelain in four human cancer cell lines of gastrointestinal origin and the mechanisms involved. METHODS: The gastric carcinoma cell lines (KATO-III and MKN45) and two chemoresistant subpopulations of the HT29 colon adenocarcinoma cell line (HT29-5M21 and HT29-5F12) were treated with a range of concentrations of bromelain, as well as with cisplatin as a positive control. The effect of bromelain on the growth and proliferation of cancer cells was determined using a sulforhodamine B assay after 72 hours of treatment. Expression of apoptosis-associated proteins in MKN45 cells treated with bromelain was analyzed by Western blotting. RESULTS: Data from our sulforhodamine B assay showed that bromelain inhibited proliferation of HT29-5F12, HT29-5M21, MKN45, and KATO-III cells, with respective half maximal inhibitory concentration values of 29, 34, 94, and 142 µg/mL. Analyzing the expression of proapoptotic and antiapoptotic proteins in bromelain-treated MKN45 cells, we observed activation of the caspase system, cleavage of PARP and p53, overexpression of cytochrome C, attenuation of phospho-Akt and Bcl2, and removal of MUC1. Apart from the caspase-dependent apoptosis observed, emergence of cleaved p53 supports a direct, extranuclear apoptotic function of p53. Moreover, interrupted Akt signaling and attenuation of Bcl2 and MUC1 oncoproteins suggest impaired survival of cancer cells. CONCLUSION: Our findings collectively indicate that bromelain exerts cytotoxic effects in a panel of human gastric and colon carcinoma cells. Our study of MKN45 cells implicated different mechanisms in bromelain-induced cell death. While promoting apoptosis with involvement of the caspase system and extranuclear p53, bromelain also appears to impair cancer cell survival by blocking the Akt pathway and attenuating Bcl2 and MUC1 oncoproteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA