Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Public Health Afr ; 14(Suppl 1): 2518, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37492543

RESUMEN

Background: Currently Mycobacterium tuberculosis is found to be resistant to the treatment of tuberculosis with rifampin and isoniazid (INH) and often stated as multi-drug resistance (MDR). Knowledge and determination of biological properties of plant extracts is a source of drug candidates in various health fields. Therefore, natural products are important in the discovery of new drugs, especially in disease therapy, particularly for tropical diseases, tuberculosis. Brucea javanica, known as Buah Makasar, is found in many Asian countries including Indonesia. This plant fruit has a very bitter taste so it cannot be directly consumed and is often used as a traditional medicine to prevent some diseases, especially malaria. There has been no research on the effectiveness of Buah Makasar in tuberculosis. Objective: This study aims to identify compounds contained in Brucea javanica, namely bruceines, bruceosides and yadanziosides in inhibiting the InhA enzyme found in the wall of Mycobacterium tuberculosis. Methods: This in-silico study is using Molegro Virtual Docker (MVD) Ver. 5.5. We compared it to the native ligand, namely N-(4- Methylbenzoyl)-4-Benzylpiperidine (code: 4PI) and the reference drug standard, INH. Results: In-silico results show that yadanziosides found in Brucea javanica have the potential to inhibit the InhA enzyme. Bruceoside F (-190.76 Kcal/mol) has the lowest MolDock score among the 27 other compounds. It is also having lower MolDock score than the native ligand 4PI (-120.61 Kcal/mol) and INH (- 54.44 Kcal/mol). Conclusion: Brucea javanica can be considered as source of drug development for againts tuberculosis.

2.
J Basic Clin Physiol Pharmacol ; 32(4): 429-437, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34214369

RESUMEN

OBJECTIVES: Medicinal plants are a source of many compounds that are useful in the pharmaceutical field for novel drug development. Polyphenols and the flavonoid group in plants are known to have several activities, such as relieving cardio vascular disease (CVD). The outer skin of the shallot which is disposed of as waste is known to have an antiplatelet activity which was tested in vitro assay. To date, there is no study reported on the ADMET profile and physicochemical properties of the active component of the shallot skins. METHODS: The extraction of shallot skins was conducted by ultrasonic irradiation using ethanol. The phytochemical screenings were carried out by TLC and color reaction. The profiling of its active ingredient was presented by GC-MS, HPLC and spectrophotometry UV-vis. Whereas their physicochemical properties were analyzed by ChemDraw 17.00 program and the ADMET predictions were studied using pkCSM online tool. The MVD program was operated in the docking study on protein P2Y12 (PDB ID 4PXZ). RESULTS: The extract showed the presence of polyphenol, flavonoids, quercetin, natalensine-3,5-dinitrobenzoate; bis[2-(2-fluorophenyl)-6-fluoroquinolin-4-yl]amine, benzo[a]heptalene, N-(trifluoroacetyl) methyl-N-deacethyl-colchicine. The ADMET prediction data displayed that the compounds in the extract have good absorption so that they can be used in the oral and transdermal routes. Some components in the extract have lower MDS than clopidogrel. CONCLUSIONS: The ultrasonicated shallot skin extract can be used as additional resources of the active pharmaceutical ingredients and to have the potency to be developed as an oral or transdermal preparation.


Asunto(s)
Chalotes , Flavonoides/farmacología , Simulación del Acoplamiento Molecular , Fitoquímicos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Antagonistas del Receptor Purinérgico P2Y
3.
Artículo en Inglés | MEDLINE | ID: mdl-31855569

RESUMEN

Background The high prevalence of thrombotic abnormalities has become a major concern in the health sector. This is triggered by uncontrolled platelet aggregation, which causes complications and death. The problem becomes more complicated because of the undesirable side effects of the drugs currently in use, some of which have reportedly become resistant. This study aims to evaluate the potency of o-hydroxycinnamic acid derivatives (OCA1a-22a) and their pharmacokinetic properties and toxicity for them to be developed as new antiplatelet candidates. Methods In silico analysis of pharmacokinetics was carried out using pKCSM. Molecular docking of the compounds OCA 1a-22a was performed using the Molegro Virtual Docker. In silico evaluation of the potency of biological activity was done by measuring the bonding energy of each tested compound to the target receptor i.e. COX-1 and P2Y12, as the Moldock score (MDS). Results pKCSM analyses showed that more than 90% of OCA 1a-22a are absorbed through the intestine and distributed in plasma. Most tested compounds are not hepatotoxic, and none is mutagenic. An evaluation of the COX-1 receptor showed that OCA 2a-22a have lower binding energy compared to aspirin, which is the COX-1 inhibitor used today. So, it can be predicted that OCA 2-22a have stronger activity. Interactions with P2Y12 show lower MDS than aspirin, but slightly higher than ibuprofen, which is the standard ligand. Conclusions ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile prediction shows that OCA 1a-22a have the potential to be developed as oral preparations. OCA 1a-22a have strong potential to interact with COX-1 and P2Y12 receptors, so they are prospective anti-platelet candidates.


Asunto(s)
Ácidos Cumáricos/farmacología , Ácidos Cumáricos/farmacocinética , Ciclooxigenasa 1/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Receptores Purinérgicos P2Y12/efectos de los fármacos , Simulación por Computador , Evaluación Preclínica de Medicamentos/métodos , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Agregación Plaquetaria/farmacocinética , Inhibidores de Agregación Plaquetaria/farmacología
4.
J Ethnopharmacol ; 225: 64-70, 2018 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-30008394

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Temu giring, the rhizome of Curcuma heyneana Valeton & Zipj (C. heyneana), is native to tropical regions, especially in Indonesia. It is traditionally used as a skin care, for cosmetic and body freshness, in Javanese and Balinese women, and has many other bioactivities such as antioxidant, anticancer and antiinflammatory. AIM OF THE STUDY: The purpose of this study was to determine the antiaging activity of C. heyneana to prove its traditional use. MATERIALS AND METHODS: The antioxidant activity was determined using the DPPH free radical method, and anti-aging activity was examined using in vitro assays such as tyrosinase inhibitor and collagenase inhibitor. In vivo tests were performed by observing histomorphologic changes in rat skin exposed to Ultraviolet (UV) rays. The total curcuminoid contents and chromatographic profiles were determined by Thin Layer Chromatography (TLC) - densitometry. RESULTS: In all in vitro assays, all of the extracts showed a dose-dependent manner in the final concentration range from 62.5 to 500 µg/mL for DPPH assay and 31.25 to 250 µg/mL for tyrosinase inhibition and collagenase inhibition assay. Curcuminoid (CUR), the active principle of Curcuma genus shows antioxidant, tyrosinase inhibitor and collagenase inhibitor activity greater than all C. heyneana extracts. The in vivo assay results showed that the topical application of the crude extract of C. heyneana produced significant improvement effects on the UV-induced skin structure damage. The total CUR content was correlated with the anti-aging activity of Curcuma heyneana. CONCLUSIONS: The results show that C. heyneana contains antioxidant compounds and has potent anti-aging activity, indicating that it can be used as an anti-aging drug candidate or as a phyto-cosmeceutical.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antioxidantes/farmacología , Curcuma , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Extractos Vegetales/farmacología , Animales , Antioxidantes/química , Colagenasas/química , Indonesia , Masculino , Inhibidores de la Metaloproteinasa de la Matriz/química , Medicina Tradicional , Monofenol Monooxigenasa/química , Extractos Vegetales/química , Ratas , Rizoma , Piel/efectos de los fármacos , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA