Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Rep ; 19(3): 655-667, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28423326

RESUMEN

Translational profiling methodologies enable the systematic characterization of cell types in complex tissues, such as the mammalian brain, where neuronal isolation is exceptionally difficult. Here, we report a versatile strategy for profiling CNS cell types in a spatiotemporally restricted fashion by engineering a Cre-dependent adeno-associated virus expressing an EGFP-tagged ribosomal protein (AAV-FLEX-EGFPL10a) to access translating mRNAs by translating ribosome affinity purification (TRAP). We demonstrate the utility of this AAV to target a variety of genetically and anatomically defined neural populations expressing Cre recombinase and illustrate the ability of this viral TRAP (vTRAP) approach to recapitulate the molecular profiles obtained by bacTRAP in corticothalamic neurons across multiple serotypes. Furthermore, spatially restricting adeno-associated virus (AAV) injections enabled the elucidation of regional differences in gene expression within this cell type. Altogether, these results establish the broad applicability of the vTRAP strategy for the molecular dissection of any CNS or peripheral cell type that can be engineered to express Cre.


Asunto(s)
Cromatografía de Afinidad/métodos , Biosíntesis de Proteínas , Ribosomas/metabolismo , Virus/metabolismo , Animales , Biomarcadores/metabolismo , Dependovirus/metabolismo , Femenino , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Masculino , Melaninas/metabolismo , Ratones , Neuronas/metabolismo , Hormonas Hipofisarias/metabolismo , Reproducibilidad de los Resultados , Serotipificación
2.
Elife ; 2: e01462, 2013 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-24381247

RESUMEN

Sugars that contain glucose, such as sucrose, are generally preferred to artificial sweeteners owing to their post-ingestive rewarding effect, which elevates striatal dopamine (DA) release. While the post-ingestive rewarding effect, which artificial sweeteners do not have, signals the nutrient value of sugar and influences food preference, the neural circuitry that mediates the rewarding effect of glucose is unknown. In this study, we show that optogenetic activation of melanin-concentrating hormone (MCH) neurons during intake of the artificial sweetener sucralose increases striatal dopamine levels and inverts the normal preference for sucrose vs sucralose. Conversely, animals with ablation of MCH neurons no longer prefer sucrose to sucralose and show reduced striatal DA release upon sucrose ingestion. We further show that MCH neurons project to reward areas and are required for the post-ingestive rewarding effect of sucrose in sweet-blind Trpm5(-/-) mice. These studies identify an essential component of the neural pathways linking nutrient sensing and food reward. DOI: http://dx.doi.org/10.7554/eLife.01462.001.


Asunto(s)
Glucosa/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Neuronas/metabolismo , Valor Nutritivo , Animales , Hipotálamo/química , Ratones , Recompensa
3.
Cell ; 151(5): 1126-37, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23178128

RESUMEN

The mammalian brain is composed of thousands of interacting neural cell types. Systematic approaches to establish the molecular identity of functional populations of neurons would advance our understanding of neural mechanisms controlling behavior. Here, we show that ribosomal protein S6, a structural component of the ribosome, becomes phosphorylated in neurons activated by a wide range of stimuli. We show that these phosphorylated ribosomes can be captured from mouse brain homogenates, thereby enriching directly for the mRNAs expressed in discrete subpopulations of activated cells. We use this approach to identify neurons in the hypothalamus regulated by changes in salt balance or food availability. We show that galanin neurons are activated by fasting and that prodynorphin neurons restrain food intake during scheduled feeding. These studies identify elements of the neural circuit that controls food intake and illustrate how the activity-dependent capture of cell-type-specific transcripts can elucidate the functional organization of a complex tissue.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Ribosomas/metabolismo , Transcriptoma , Animales , Encéfalo/citología , Ayuno , Conducta Alimentaria , Hipotálamo/citología , Hipotálamo/metabolismo , Ratones , Fosforilación , Proteína S6 Ribosómica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA