Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 49(11): 10217-10228, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36063350

RESUMEN

BACKGROUND: Chia oil is high in omega-3 fatty acids, which have been linked to a lower risk of many diseases, including cancer. Oil encapsulation is a method that holds promise for maintaining oil content while enhancing solubility and stability. The purpose of this study is to prepare nanoencapsulated Chia oil and investigate its suppressive effects on rat chemically induced breast cancer. METHODS: The oil was extracted from commercial Chia seeds and their fatty acids were analyzed using Gas Chromatography-mass spectrometry (GC/MS). Sodium alginate was used as a loading agent to create the Chia oil nanocapsules. The DPPH assay was used to assess the oil nanocapsules' capacity to scavenge free radicals. Breast cancer induction was done by single dose subcutaneously administration of 80 mg/kg dimethylbenz (a) anthracene (DMBA). Models of breast cancer were given Chia oil nanocapsules orally for one month at doses of 100 and 200 mg/kg. Through measuring intracellular reactive oxygen species (ROS) and protein carbonyl, assessing the gene expression of tumor suppressor genes (BRCA 1 & 2, TP53), and conducting histopathological analysis, the suppressive effect of Chia oil nanocapsules was examined. RESULTS: The increase in ROS and PC levels brought on by DMBA was significantly decreased by the administration of Chia oil nanocapsules. In tumor tissue from rats given Chia oil nanocapsules, the mRNA expression levels of BRCA1, BRCA2, and TP53 were controlled Histopathological analysis clarified that the tissue architecture of breast tumors was improved by nanocapsules management. CONCLUSIONS: These findings demonstrate the ability of Chia oil nanocapsules to inhibit cancer cells in the rat breast.


Asunto(s)
Ácidos Grasos Omega-3 , Nanocápsulas , Neoplasias , Salvia , Ratas , Animales , Salvia/química , Aceites de Plantas/metabolismo , Ácidos Grasos Omega-3/análisis , Especies Reactivas de Oxígeno , Estrés Oxidativo
2.
Environ Sci Pollut Res Int ; 29(58): 87184-87199, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35802336

RESUMEN

Topiramate has multiple pharmacological mechanisms that are efficient in treating epilepsy and migraine. Ginger has been established to have gingerols and shogaols that cause migraine relief. Moreover, Topiramate has many off-label uses. Thus, it was necessary to explore the possible neurotoxicity of Topiramate and the role of ginger oil in attenuating the Topiramate neurotoxicity. Male albino mice were orally gavaged with Topiramate, ginger oil (400 mg/kg), and Topiramate plus ginger oil with the same pattern for 28 days. Oxidative stress markers, acetylcholinesterase (AchE), gamma-aminobutyric acid (GABA), and tumor necrosis factor-alpha (TNF-α) were examined. Histopathological examination, immunohistochemical glial fibrillary acidic protein (GFAP), and Bax expression analysis were detected. The GABAAR subunits, Gabra1, Gabra3, and Gabra5 expression, were assessed by RT-qPCR. The investigation showed that Topiramate raised oxidative stress markers levels, neurotransmitters, TNF-α, and diminished glutathione (GSH). In addition, Topiramate exhibited various neuropathological alterations, strong Bax, and GFAP immune-reactivity in the cerebral cortex. At the same time, the results indicated that ginger oil had no neurotoxicity. The effect of Topiramate plus ginger oil alleviated the changes induced by Topiramate in the tested parameters. Both Topiramate and ginger oil upregulated the mRNA expression of gabra1 and gabra3, while their interaction markedly downregulated them. Therefore, it could be concluded that the Topiramate overdose could cause neurotoxicity, but the interaction with ginger oil may reduce Topiramate-induced neurotoxicity and should be taken in parallel.


Asunto(s)
Trastornos Migrañosos , Aceites Volátiles , Zingiber officinale , Animales , Masculino , Ratones , Topiramato/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Acetilcolinesterasa/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Aceites Volátiles/farmacología , Aceites Volátiles/metabolismo , Extractos Vegetales/farmacología , Glutatión/metabolismo , Encéfalo , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/patología
3.
Biomed Pharmacother ; 110: 409-419, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30530043

RESUMEN

Sexual dysfunction in the epileptic patient is difficult to confirm whether it is ailment or therapy related. Antiepileptic drugs often use in reproductive age, through reproductive progress and maturation. On the other side, cold-pressed oils are rich in bioactive phytochemicals with health-promoting traits. The target of this work was to appraise the sexual dysfunction of antiepileptic Topiramate (TPM) and cold pressed ginger oil (CPGO) as antiepileptic alternative medicine in male mice. Fifty-four adult male albino mice were divided into nine groups (n = 6 mice). One group given saline and used as negative control; another one was given corn oil as vehicle. Six groups administered orally with TPM or CPGO at 100, 200 and 400 mg/kg. Moreover, group of animals co-administrated orally CPGO with TPM (400 mg/kg) to study their interaction. Fatty acid profile and tocols composition of CPGO were determined. in vitro assays were undertaken to evaluate radical scavenging traits of CPGO utilizing sable 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and galvinoxyl radicals. The study investigated antioxidant and oxidative stress markers, sexual hormones levels, mRNA levels of vascular endothelial growth factor (Vegfa), synaptonemal complex protein (Sycp3), Wilms tumor gene (Wt1) as well as histopathological and immunohistochemical examination. Strong radical scavenging potential of CPGO against stable DPPH· and galvinoxyl radicals was recorded. The results revealed that TPM caused a dose-dependent reduction in the antioxidant activities and testosterone content, while, malonaldehyde (MDA) and nitric oxide (NO) as oxidative stress markers were elevated. Vegfa and Sycp3 mRNA expression down-regulated at all Topiramate tested doses, but Wt1 up-regulated at 400 mg/kg. TPM (400 mg/kg) revealed histological alterations associated with strong positive Bax immune reactive spermatogoneal and Leydig cells. Ginger oil elevated the CAT and SOD (antioxidant enzymes), serum testosterone and diminished the oxidative stress, up regulated the expression of Vegfa and Sycp3 and down-regulated the Wt1 expression. Meanwhile, CPGO revealed no histopathological alterations and no Bax immune-reactive cells. CPGO co-administration with TPM (400 mg/kg) attenuated the TPM toxicity. High doses of TPM may exhibit sexual dysfunction but CPGO is safe and has androgenic property. CPGO co-administration could protect the antiepileptic patient from the TPM sexual dysfunction.


Asunto(s)
Anticonvulsivantes/toxicidad , Hormonas Esteroides Gonadales/biosíntesis , Aceites de Plantas/administración & dosificación , Testículo/metabolismo , Topiramato/toxicidad , Zingiber officinale , Animales , Expresión Génica , Hormonas Esteroides Gonadales/genética , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Aceites de Plantas/aislamiento & purificación , Testículo/efectos de los fármacos , Testículo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA