Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Open Vet J ; 14(1): 416-427, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633182

RESUMEN

Background: Acute lung injury (ALI) is a severe condition distinguished by inflammation and impaired gas exchange in the lungs. Staphylococcus aureus, a common bacterium, can cause ALI through its virulence factors. Aloe vera is a medicinal plant that has been traditionally used to treat a variety of illnesses due to its anti-inflammatory properties. Chitosan nanoparticles are biocompatible and totally biodegradable materials that have shown potential in drug delivery systems. Aim: To explore the antibacterial activity of Aloe vera-loaded chitosan nanoparticles (AV-CS-NPs) against S. aureus in vitro and in vivo with advanced techniques. Methods: The antibacterial efficacy of AV-CS-NPs was evaluated through a broth microdilution assay. In addition, the impact of AV-CS-NPs on S. aureus-induced ALI in rats was examined by analyzing the expression of genes linked to inflammation, oxidative stress, and apoptosis. Furthermore, rat lung tissue was scanned histologically. The rats were divided into three groups: control, ALI, and treatment with AV-CS-NPs. Results: The AV-CS-NPs that were prepared exhibited clustered semispherical and spherical forms, having an average particle size of approximately 60 nm. These nanoparticles displayed a diverse structure with an uneven distribution of particle sizes. The maximum entrapment efficiency of 95.5% ± 1.25% was achieved. The obtained findings revealed that The minimum inhibitory concentration and minimum bactericidal concentration values were determined to be 5 and 10 ug/ml, respectively, indicating the potent bactericidal effect of the NPs. Also, S. aureus infected rats explored upregulation in the mRNA expression of TLR2 and TLR4 compared to healthy control groups. AV-CS-NP treatment reverses the case where there was repression in mRNA expression of TLR2 and TLR4 compared to S. aureus-treated rats. Conclusion: These NPs can serve as potential candidates for the development of alternative antimicrobial agents.


Asunto(s)
Lesión Pulmonar Aguda , Aloe , Quitosano , Nanopartículas , Enfermedades de los Roedores , Ratas , Animales , Quitosano/química , Quitosano/farmacología , FN-kappa B/farmacología , Staphylococcus aureus , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Nanopartículas/química , Transducción de Señal , Antibacterianos/farmacología , Lesión Pulmonar Aguda/veterinaria , Inflamación/veterinaria , ARN Mensajero/farmacología
2.
Biochim Biophys Acta Gen Subj ; 1868(3): 130543, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38103758

RESUMEN

Novel biocompatible and effective hyperthermia (HT) treatment materials for breast cancer therapeutic have recently attracting researchers, because of their effective ablation of cancer cells and negligible damage to healthy cells. Magnetoliposome (MLs) have numerous possibilities for utilize in cancer treatment, including smart drug delivery (SDD) mediated through alternating magnetic fields (AMF). In this work, magnesium ferrite (MgFe2O4) encapsulated with liposomes lipid bilayer (MLs), Quercetin (Q)-loaded MgFe2O4@Liposomes (Q-MLs) nano-hybrid system were successfully synthesized for magnetic hyperthermia (MHT) and SDD applications. The hybrid system was well-investigated by different techniques using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), Energy dispersive X-ray (EDX), Vibrating sample magnetometer (VSM), Transmission electron microscope (TEM), and Zeta Potential (ZP). The characterization results confirmed the improving quercetin-loading on the MLs surface. TEM analysis indicated the synthesized MgFe2O4, MLs, and Q-MLs were spherical with an average size of 23.7, 35.5, and 329.5 nm, respectively. The VSM results revealed that the MgFe2O4 exhibit excellent and effective saturation magnetization (MS) (40.5 emu/g). Quercetin drug loading and entrapment efficiency were found to be equal to 2.1 ± 0.1% and 42.3 ± 2.2%, respectively. The in-vitro Q release from Q-loaded MLs was found 40.2% at pH 5.1 and 69.87% at pH 7.4, verifying the Q-loading pH sensitivity. The MLs and Q-MLs hybrid system as MHT agents exhibit specific absorption rate (SAR) values of 197 and 205 W/g, correspondingly. Furthermore, the Q-MLs cytotoxicity was studied on the MCF-7 breast cancer cell line, and the obtained data demonstrated that the Q-MLs have a high cytotoxicity effect compared to MLs and free Q.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Humanos , Femenino , Liposomas/química , Quercetina/farmacología , Quercetina/química , Neoplasias de la Mama/tratamiento farmacológico , Membrana Dobles de Lípidos , Células MCF-7 , Espectroscopía Infrarroja por Transformada de Fourier , Hipertermia Inducida/métodos , Fenómenos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA