Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 12: 697445, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975743

RESUMEN

Aim: We evaluated the efficacy of a novel brain permeable "metformin-like" AMP-activated protein kinase activator, R481, in regulating glucose homeostasis. Materials and Methods: We used glucose sensing hypothalamic GT1-7 neuronal cells and pancreatic αTC1.9 α-cells to examine the effect of R481 on AMPK pathway activation and cellular metabolism. Glucose tolerance tests and hyperinsulinemic-euglycemic and hypoglycemic clamps were used in Sprague-Dawley rats to assess insulin sensitivity and hypoglycemia counterregulation, respectively. Results: In vitro, we demonstrate that R481 increased AMPK phosphorylation in GT1-7 and αTC1.9 cells. In Sprague-Dawley rats, R481 increased peak glucose levels during a glucose tolerance test, without altering insulin levels or glucose clearance. The effect of R481 to raise peak glucose levels was attenuated by allosteric brain permeable AMPK inhibitor SBI-0206965. This effect was also completely abolished by blockade of the autonomic nervous system using hexamethonium. During hypoglycemic clamp studies, R481 treated animals had a significantly lower glucose infusion rate compared to vehicle treated controls. Peak plasma glucagon levels were significantly higher in R481 treated rats with no change to plasma adrenaline levels. In vitro, R481 did not alter glucagon release from αTC1.9 cells, but increased glycolysis. Non brain permeable AMPK activator R419 enhanced AMPK activity in vitro in neuronal cells but did not alter glucose excursion in vivo. Conclusions: These data demonstrate that peripheral administration of the brain permeable "metformin-like" AMPK activator R481 increases blood glucose by activation of the autonomic nervous system and amplifies the glucagon response to hypoglycemia in rats. Taken together, our data suggest that R481 amplifies the counterregulatory response to hypoglycemia by a central rather than a direct effect on the pancreatic α-cell. These data provide proof-of-concept that central AMPK could be a target for future drug development for prevention of hypoglycemia in diabetes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Sistema Nervioso Autónomo/efectos de los fármacos , Glucemia/efectos de los fármacos , Hipoglucemia/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Animales , Sistema Nervioso Autónomo/fisiología , Benzamidas/farmacología , Glucemia/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Hipoglucemia/patología , Hipoglucemia/fisiopatología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Permeabilidad/efectos de los fármacos , Piperidinas/farmacología , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley
2.
Glia ; 68(6): 1241-1254, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31880353

RESUMEN

A role for glial cells in brain circuits controlling feeding has begun to be identified with hypothalamic astrocyte signaling implicated in regulating energy homeostasis. The nucleus of the solitary tract (NTS), within the brainstem dorsal vagal complex (DVC), integrates vagal afferent information from the viscera and plays a role in regulating food intake. We hypothesized that astrocytes in this nucleus respond to, and influence, food intake. Mice fed high-fat chow for 12 hr during the dark phase showed NTS astrocyte activation, reflected in an increase in the number (65%) and morphological complexity of glial-fibrillary acidic protein (GFAP)-immunoreactive cells adjacent to the area postrema (AP), compared to control chow fed mice. To measure the impact of astrocyte activation on food intake, we delivered designer receptors exclusively activated by designer drugs (DREADDs) to DVC astrocytes (encompassing NTS, AP, and dorsal motor nucleus of the vagus) using an adeno-associated viral (AAV) vector (AAV-GFAP-hM3Dq_mCherry). Chemogenetic activation with clozapine-N-oxide (0.3 mg/kg) produced in greater morphological complexity in astrocytes and reduced dark-phase feeding by 84% at 4 hr postinjection compared with vehicle treatment. hM3Dq-activation of DVC astrocytes also reduced refeeding after an overnight fast (71% lower, 4 hr postinjection) when compared to AAV-GFAP-mCherry expressing control mice. DREADD-mediated astrocyte activation did not impact locomotion. hM3Dq activation of DVC astrocytes induced c-FOS in neighboring neuronal feeding circuits (including in the parabrachial nucleus). This indicates that NTS astrocytes respond to acute nutritional excess, are involved in the integration of peripheral satiety signals, and can reduce food intake when activated.


Asunto(s)
Astrocitos/metabolismo , Tronco Encefálico/metabolismo , Ingestión de Alimentos/fisiología , Hipotálamo/metabolismo , Neuronas/metabolismo , Animales , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleo Solitario/citología
3.
Diabetes Obes Metab ; 19(7): 997-1005, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28211632

RESUMEN

AIM: To test the hypothesis that, given the role of AMP-activated protein kinase (AMPK) in regulating intracellular ATP levels, AMPK may alter ATP release from astrocytes, the main sources of extracellular ATP (eATP) within the brain. MATERIALS AND METHODS: Measurements of ATP release were made from human U373 astrocytoma cells, primary mouse hypothalamic (HTAS) and cortical astrocytes (CRTAS) and wild-type and AMPK α1/α2 null mouse embryonic fibroblasts (MEFs). Cells were treated with drugs known to modulate AMPK activity: A-769662, AICAR and metformin, for up to 3 hours. Intracellular calcium was measured using Fluo4 and Fura-2 calcium-sensitive fluorescent dyes. RESULTS: In U373 cells, A-769662 (100 µM) increased AMPK phosphorylation, whereas AICAR and metformin (1 mM) induced a modest increase or had no effect, respectively. Only A-769662 increased eATP levels, and this was partially blocked by AMPK inhibitor Compound C. A-769662-induced increases in eATP were preserved in AMPK α1/α2 null MEF cells. A-769662 increased intracellular calcium in U373, HTAS and CRTAS cells and chelation of intracellular calcium using BAPTA-AM reduced A-769662-induced eATP levels. A-769662 also increased ATP release from a number of other central and peripheral endocrine cell types. CONCLUSIONS: AMPK is required to maintain basal eATP levels but is not required for A-769662-induced increases in eATP. A-769662 (>50 µM) enhanced intracellular calcium levels leading to ATP release in an AMPK and purinergic receptor independent pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Astrocitos/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Activadores de Enzimas/farmacología , Hipoglucemiantes/farmacología , Pironas/farmacología , Tiofenos/farmacología , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/metabolismo , Compuestos de Bifenilo , Línea Celular , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Embrión de Mamíferos/citología , Activación Enzimática/efectos de los fármacos , Humanos , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos
4.
J Comp Neurol ; 521(6): 1322-33, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23047490

RESUMEN

Obesity is associated with chronic low-grade inflammation in peripheral tissues, which contributes to the development of comorbidities such as insulin resistance and cardiovascular disease. While less extensively characterized, obesity also promotes inflammation in the central nervous system (CNS) and the consequences of this inflammation for CNS function are only beginning to be examined. In response to CNS insults such as inflammation, astrocytes undergo a process of hypertrophy and hyperplasia known as reactive astrogliosis. We used immunohistochemistry to examine the differential distribution of the astrocyte marker glial-fibrillary acidic protein (GFAP) in the brains of diet-induced or genetically obese mice compared with their respective lean controls to determine whether different nuclei of the hypothalamus showed comparable astrogliosis in response to obesity. The areas that showed the highest differential GFAP immunoreactivity between lean and obese animals include the medial preoptic, paraventricular, and dorsomedial nuclei. Comparatively, little astrogliosis was seen in the ventromedial nucleus, lateral hypothalamus, or anterior hypothalamic area. In obese animals high levels of GFAP immunoreactivity were often associated with the microvasculature. There were no differences in the differential distribution of GFAP staining between obese animals and their lean controls in the diet-induced compared with the genetic model of obesity. The exact cause(s) of the astrogliosis in obesity is not known. The finding that obesity causes a distinct pattern of elevated GFAP immunoreactivity associated with microvessels suggests that the astrogliosis may be occurring as a response to changes at the blood-brain barrier and/or in the peripheral circulation.


Asunto(s)
Astrocitos/metabolismo , Gliosis/metabolismo , Hipotálamo/metabolismo , Obesidad/metabolismo , Animales , Astrocitos/patología , Femenino , Gliosis/patología , Hipotálamo/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/patología
5.
Nat Neurosci ; 7(4): 335-6, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15034587

RESUMEN

Hypothalamic pro-opiomelanocortin (POMC) neurons help regulate long-term energy stores. POMC neurons are also found in the nucleus tractus solitarius (NTS), a region regulating satiety. We show here that mouse brainstem NTS POMC neurons are activated by cholecystokinin (CCK) and feeding-induced satiety and that activation of the neuronal melanocortin-4 receptor (MC4-R) is required for CCK-induced suppression of feeding; the melanocortin system thus provides a potential substrate for integration of long-term adipostatic and short-term satiety signals.


Asunto(s)
Ingestión de Alimentos/fisiología , Hipotálamo/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Respuesta de Saciedad/fisiología , Sincalida/análogos & derivados , Sincalida/fisiología , Núcleo Solitario/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Regulación hacia Abajo , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Femenino , Hipotálamo/citología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Melanocortina Tipo 4/deficiencia , Núcleo Solitario/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA