Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur J Hum Genet ; 30(2): 142-149, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34744166

RESUMEN

Rapid genomic testing in critically ill neonatal and paediatric patients has transformed the paradigm of rare disease diagnosis, delivering results in real time to inform patient management. More than 20 studies totalling over 1500 patients from diverse healthcare settings worldwide have now been published, forming a compelling evidence base for healthcare system implementation. We review the reported diagnostic and clinical outcomes, as well as broader evaluations of family and professional experiences, cost effectiveness, implementation challenges and bioethical issues arising from rapid testing. As rapid genomic testing transitions from the research to the healthcare setting to become a 'standard of care' test, there is a need to develop effective service delivery models to support scalability at both the laboratory and clinical level and promote equity of access, prompt test initiation, integrated multidisciplinary input and holistic family support. Harnessing the high level of professional engagement with rapid genomic testing programmes will continue to drive innovation and adoption, while close integration with emerging precision medicine approaches will be necessary to deliver on the promise of reduced infant and child mortality.


Asunto(s)
Enfermedad Crítica , Nivel de Atención , Niño , Atención a la Salud , Pruebas Genéticas/métodos , Humanos , Lactante , Recién Nacido
2.
Lancet Diabetes Endocrinol ; 6(8): 637-646, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29880308

RESUMEN

BACKGROUND: KCNJ11 mutations cause permanent neonatal diabetes through pancreatic ATP-sensitive potassium channel activation. 90% of patients successfully transfer from insulin to oral sulfonylureas with excellent initial glycaemic control; however, whether this control is maintained in the long term is unclear. Sulfonylurea failure is seen in about 44% of people with type 2 diabetes after 5 years of treatment. Therefore, we did a 10-year multicentre follow-up study of a large international cohort of patients with KCNJ11 permanent neonatal diabetes to address the key questions relating to long-term efficacy and safety of sulfonylureas in these patients. METHODS: In this multicentre, international cohort study, all patients diagnosed with KCNJ11 permanent neonatal diabetes at five laboratories in Exeter (UK), Rome (Italy), Bergen (Norway), Paris (France), and Krakow (Poland), who transferred from insulin to oral sulfonylureas before Nov 30, 2006, were eligible for inclusion. Clinicians collected clinical characteristics and annual data relating to glycaemic control, sulfonylurea dose, severe hypoglycaemia, side-effects, diabetes complications, and growth. The main outcomes of interest were sulfonylurea failure, defined as permanent reintroduction of daily insulin, and metabolic control, specifically HbA1c and sulfonylurea dose. Neurological features associated with KCNJ11 permanent neonatal diabetes were also assessed. This study is registered with ClinicalTrials.gov, number NCT02624817. FINDINGS: 90 patients were identified as being eligible for inclusion and 81 were enrolled in the study and provided long-term (>5·5 years cut-off) outcome data. Median follow-up duration for the whole cohort was 10·2 years (IQR 9·3-10·8). At most recent follow-up (between Dec 1, 2012, and Oct 4, 2016), 75 (93%) of 81 participants remained on sulfonylurea therapy alone. Excellent glycaemic control was maintained for patients for whom we had paired data on HbA1c and sulfonylurea at all time points (ie, pre-transfer [for HbA1c], year 1, and most recent follow-up; n=64)-median HbA1c was 8·1% (IQR 7·2-9·2; 65·0 mmol/mol [55·2-77·1]) before transfer to sulfonylureas, 5·9% (5·4-6·5; 41·0 mmol/mol [35·5-47·5]; p<0·0001 vs pre-transfer) at 1 year, and 6·4% (5·9-7·3; 46·4 mmol/mol [41·0-56·3]; p<0·0001 vs year 1) at most recent follow-up (median 10·3 years [IQR 9·2-10·9]). In the same patients, median sulfonylurea dose at 1 year was 0·30 mg/kg per day (0·14-0·53) and at most recent follow-up visit was 0·23 mg/kg per day (0·12-0·41; p=0·03). No reports of severe hypoglycaemia were recorded in 809 patient-years of follow-up for the whole cohort (n=81). 11 (14%) patients reported mild, transient side-effects, but did not need to stop sulfonylurea therapy. Seven (9%) patients had microvascular complications; these patients had been taking insulin longer than those without complications (median age at transfer to sulfonylureas 20·5 years [IQR 10·5-24·0] vs 4·1 years [1·3-10·2]; p=0·0005). Initial improvement was noted following transfer to sulfonylureas in 18 (47%) of 38 patients with CNS features. After long-term therapy with sulfonylureas, CNS features were seen in 52 (64%) of 81 patients. INTERPRETATION: High-dose sulfonylurea therapy is an appropriate treatment for patients with KCNJ11 permanent neonatal diabetes from diagnosis. This therapy is safe and highly effective, maintaining excellent glycaemic control for at least 10 years. FUNDING: Wellcome Trust, Diabetes UK, Royal Society, European Research Council, Norwegian Research Council, Kristian Gerhard Jebsen Foundation, Western Norway Regional Health Authority, Southern and Eastern Norway Regional Health Authority, Italian Ministry of Health, Aide aux Jeunes Diabetiques, Societe Francophone du Diabete, Ipsen, Slovak Research and Development Agency, and Research and Development Operational Programme funded by the European Regional Development Fund.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Enfermedades del Recién Nacido/tratamiento farmacológico , Canales de Potasio de Rectificación Interna/genética , Compuestos de Sulfonilurea/uso terapéutico , Adolescente , Adulto , Biomarcadores/análisis , Glucemia/análisis , Niño , Preescolar , Estudios de Cohortes , Diabetes Mellitus/genética , Diabetes Mellitus/patología , Femenino , Estudios de Seguimiento , Hemoglobina Glucada/análisis , Humanos , Lactante , Recién Nacido , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/patología , Masculino , Mutación , Pronóstico , Adulto Joven
3.
J Clin Res Pediatr Endocrinol ; 8(4): 478-481, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27181099

RESUMEN

Congenital hyperinsulinism (CHI) is the most common cause of neonatal persistent hypoglycemia caused by mutations in nine known genes. Early diagnosis and treatment are important to prevent brain injury. The clinical presentation and response to pharmacological therapy may vary depending on the underlying pathology. Genetic analysis is important in the diagnosis, treatment, patient follow-up, and prediction of recurrence risk within families. Our patient had severe hypoglycemia and seizure following birth. His diagnostic evaluations including genetic testing confirmed CHI. He was treated with a high-glucose infusion, high-dose diazoxide, nifedipine, and glucagon infusion. A novel homozygous mutation (p.F315I) in the KCNJ11 gene, leading to diazoxide-unresponsive CHI, was identified. Both parents were heterozygous for this mutation. Our patient's clinical course was complicated by severe refractory hypoglycemia; he was successfully managed with sirolimus and surgical intervention was not required. Diazoxide, nifedipine, and glucagon were discontinued gradually following sirolimus therapy. The patient was discharged at 2 months of age on low-dose octreotide and sirolimus. His outpatient clinical follow-up continues with no episodes of hypoglycemia. We present a novel homozygous p.F315I mutation in the KCNJ11 gene leading to diazoxide-unresponsive CHI in a neonate. This case illustrates the challenges associated with the diagnosis and management of CHI, as well as the successful therapy with sirolimus.


Asunto(s)
Hiperinsulinismo Congénito/tratamiento farmacológico , Predisposición Genética a la Enfermedad/genética , Mutación , Canales de Potasio de Rectificación Interna/genética , Sirolimus/uso terapéutico , Hiperinsulinismo Congénito/genética , Consanguinidad , Salud de la Familia , Femenino , Heterocigoto , Homocigoto , Humanos , Inmunosupresores/uso terapéutico , Recién Nacido , Masculino , Padres , Resultado del Tratamiento
4.
J Clin Res Pediatr Endocrinol ; 6(2): 119-21, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24932607

RESUMEN

Hyperinsulinemic hypoglycemia (HH) is the commonest cause of persistent hypoglycemia in the neonatal and infancy periods. Mutations in the ABCC8 and KCNJ11 genes, which encode subunits of the ATP-sensitive potassium channel in the pancreatic beta cell, are identified in approximately 50% of these patients. The first-line drug in the treatment of HH is diazoxide. Octreotide and glucagon can be used in patients who show no response to diazoxide. Nifedipine, a calcium-channel blocker, has been shown to be an effective treatment in a small number of patients with diazoxide-unresponsive HH. We report a HH patient with a homozygous ABCC8 mutation (p.W1339X) who underwent a near-total pancreatectomy at 2 months of age due to a lack of response to diazoxide and octreotide treatment. Severe hypoglycemic attacks continued following surgery, while the patient was being treated with octreotide. These attacks resolved when nifedipine was introduced. Whilst our patient responded well to nifedipine, the dosage could not be increased to 0.75 mg/kg/day due to development of hypotension, a reported side effect of this drug. Currently, our patient, now aged 4 years, is receiving a combination of nifedipine and octreotide treatment. He is under good control and shows no side effects. In conclusion, nifedipine treatment can be started in patients with HH who show a poor response to diazoxide and octreotide treatment.


Asunto(s)
Hiperinsulinismo Congénito/tratamiento farmacológico , Nifedipino/uso terapéutico , Octreótido/uso terapéutico , Preescolar , Codón sin Sentido , Hiperinsulinismo Congénito/cirugía , Diazóxido/uso terapéutico , Humanos , Lactante , Recién Nacido , Masculino , Pancreatectomía , Receptores de Sulfonilureas/genética
5.
PLoS One ; 9(5): e98054, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24840042

RESUMEN

CONTEXT: Congenital hyperinsulinism (CHI), the commonest cause of persistent hypoglycaemia, has two main histological subtypes: diffuse and focal. Diffuse CHI, if medically unresponsive, is managed with near-total pancreatectomy. Post-pancreatectomy, in addition to persistent hypoglycaemia, there is a very high risk of diabetes mellitus and pancreatic exocrine insufficiency. SETTING: International referral centre for the management of CHI. PATIENTS: Medically unresponsive diffuse CHI patients managed with near-total pancreatectomy between 1994 and 2012. INTERVENTION: Near-total pancreatectomy. MAIN OUTCOME MEASURES: Persistent hypoglycaemia post near-total pancreatectomy, insulin-dependent diabetes mellitus, clinical and biochemical (faecal elastase 1) pancreatic exocrine insufficiency. RESULTS: Of more than 300 patients with CHI managed during this time period, 45 children had medically unresponsive diffuse disease and were managed with near-total pancreatectomy. After near-total pancreatectomy, 60% of children had persistent hypoglycaemia requiring medical interventions. The incidence of insulin dependent diabetes mellitus was 96% at 11 years after surgery. Thirty-two patients (72%) had biochemical evidence of severe pancreatic exocrine insufficiency (Faecal elastase 1<100 µg/g). Clinical exocrine insufficiency was observed in 22 (49%) patients. No statistically significant difference in weight and height standard deviation score (SDS) was found between untreated subclinical pancreatic exocrine insufficiency patients and treated clinical pancreatic exocrine insufficiency patients. CONCLUSIONS: The outcome of diffuse CHI patients after near-total pancreatectomy is very unsatisfactory. The incidence of persistent hypoglycaemia and insulin-dependent diabetes mellitus is very high. The presence of clinical rather than biochemical pancreatic exocrine insufficiency should inform decisions about pancreatic enzyme supplementation.


Asunto(s)
Hiperinsulinismo Congénito/fisiopatología , Hiperinsulinismo Congénito/cirugía , Páncreas/fisiopatología , Pancreatectomía/efectos adversos , Antropometría , Secuencia de Bases , Niño , Diabetes Mellitus Tipo 1/patología , Ensayo de Inmunoadsorción Enzimática , Insuficiencia Pancreática Exocrina/patología , Humanos , Hipoglucemia/patología , Estimación de Kaplan-Meier , Londres , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Elastasa Pancreática/metabolismo , Reacción en Cadena de la Polimerasa , Canales de Potasio de Rectificación Interna/genética , Análisis de Secuencia de ADN , Receptores de Sulfonilureas/genética
6.
Clin Endocrinol (Oxf) ; 71(3): 358-62, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19021632

RESUMEN

OBJECTIVE: Mutations in the ABCC8 gene encoding the SUR1 subunits of the beta-cell K-ATP channel cause neonatal diabetes (ND) mellitus. We aimed to determine the contribution of ABCC8 gene to ND in Poland, to describe the clinical phenotype associated with its mutations and to examine potential modifying factors. PATIENTS: The Nationwide Registry of ND in Poland includes patients diagnosed before 6 months of age. In total 16 Kir6.2 negative patients with ND, 14 permanent and 2 relapsed transient, were examined. MEASUREMENTS: ABCC8 gene mutations were detected by direct sequencing. Mutation carriers' characteristics included clinical data and biochemical parameters. In addition, we performed the hyperinsulinaemic euglycaemic clamp and tested for islet-specific antibodies in diabetic subjects. RESULTS: We identified two probands with permanent ND (one heterozygous F132V mutation carrier and one compound heterozygote with N23H and R826W mutations) and two others with relapsed transient ND (heterozygotes for R826W and V86A substitutions, respectively). One subject, a heterozygous relative with the R826W mutation, had adult onset diabetes. There were striking differences in the clinical picture of the mutation carriers as the carrier of two mutations, N23H and R826W, was controlled on diet alone with HbA(1c) of 7.3%, whereas the F132V mutation carrier was on 0.66 IU/kg/day of insulin with HbA(1c) of 11.7%. The C-peptide level varied from 0.1 ng/ml (F132V) to 0.75 ng/ml (V86A). We also observed a variable insulin resistance, from moderate (M = 5.5 and 5.6 mg/kg/min, respectively, in the two R826W mutation carriers) to severe (M = 2.6 mg/kg/min in the F132V mutation carrier). We were able to transfer two patients off insulin to sulphonylurea (SU) and to reduce insulin dose in one other patient. Interestingly, there was no response to SU in the most insulin resistant F132V mutation carrier despite high dose of glibenclamide. All examined auto-antibodies were present in one of the subjects, the V86A mutation carrier, although this did not seem to influence the clinical picture, as we were able to transfer this girl off insulin. CONCLUSION: Mutations in SUR1 are the cause of about 15% of Kir6.2 negative permanent ND in Poland. The clinical phenotype of SUR1 diabetic mutation carriers is heterogeneous and it appears to be modified by variable sensitivity to insulin.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Diabetes Mellitus/genética , Mutación , Canales de Potasio de Rectificación Interna/genética , Receptores de Droga/genética , Adolescente , Niño , Femenino , Humanos , Lactante , Masculino , Linaje , Fenotipo , Polonia , Receptores de Sulfonilureas
7.
Nat Clin Pract Endocrinol Metab ; 4(4): 200-13, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18301398

RESUMEN

Monogenic diabetes resulting from mutations that primarily reduce beta-cell function accounts for 1-2% of diabetes cases, although it is often misdiagnosed as either type 1 or type 2 diabetes. Knowledge of the genetic etiology of diabetes enables more-appropriate treatment, better prediction of disease progression, screening of family members and genetic counseling. We propose that the old clinical classifications of maturity-onset diabetes of the young and neonatal diabetes are obsolete and that specific genetic etiologies should be sought in four broad clinical situations because of their specific treatment implications. Firstly, diabetes diagnosed before 6 months of age frequently results from mutation of genes that encode Kir6.2 (ATP-sensitive inward rectifier potassium channel) or sulfonylurea receptor 1 subunits of an ATP-sensitive potassium channel, and improved glycemic control can be achieved by treatment with high-dose sulfonylureas rather than insulin. Secondly, patients with stable, mild fasting hyperglycemia detected particularly when they are young could have a glucokinase mutation and might not require specific treatment. Thirdly, individuals with familial, young-onset diabetes that does not fit with either type 1 or type 2 diabetes might have mutations in the transcription factors HNF-1alpha (hepatocyte nuclear factor 1-alpha) or HNF-4alpha, and can be treated with low-dose sulfonylureas. Finally, extrapancreatic features, such as renal disease (caused by mutations in HNF-1beta) or deafness (caused by a mitochondrial m.3243A>G mutation), usually require early treatment with insulin.


Asunto(s)
Diabetes Mellitus/clasificación , Diabetes Mellitus/genética , Células Secretoras de Insulina/patología , Transportadoras de Casetes de Unión a ATP/genética , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/patología , Diagnóstico Diferencial , Femenino , Glucoquinasa/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/genética , Humanos , Recién Nacido , Masculino , Mutación , Canales de Potasio/genética , Canales de Potasio de Rectificación Interna/genética , Receptores de Droga/genética , Receptores de Sulfonilureas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA