Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 271(10): 5361-8, 1996 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-8621389

RESUMEN

Mitogen-activated protein/ERK kinase kinases (MEKKs) phosphorylate and activate protein kinases which in turn phosphorylate and activate the p42/44 mitogen-activated protein kinase (MAPK), c-Jun/stress-activated protein kinases (JNKs), and p38/Hog1 kinase. We have isolated the cDNAs for two novel mammalian MEKKs (MEKK 2 and 3). MEKK 2 and 3 encode proteins of 69.7 and 71 kDa, respectively. The kinase domains encoded in the COOH-terminal moiety are 94% conserved; the NH2-terminal moieties are approximately 65% homologous, suggesting this region may encode sequences conferring differential regulation of the two kinases. Expression of MEKK 2 or 3 in HEK293 cells results in activation of p42/44MAPK and JNK but not of p38/Hog1 kinase. Immunoprecipitated MEKK 2 phosphorylated the MAP kinase kinases, MEK 1, and JNK kinase. Titration of MEKK 2 and 3 expression in transfection assays indicated that MEKK 2 preferentially activated JNK while MEKK 3 preferentially activated p42/44MAPK. These findings define a family of MEKK proteins capable of regulating sequential protein kinase pathways involving MAPK members.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Anticuerpos , Secuencia de Bases , Línea Celular , Clonación Molecular , Secuencia Conservada , Cartilla de ADN , ADN Complementario , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , Cinética , MAP Quinasa Quinasa 2 , MAP Quinasa Quinasa 3 , Datos de Secuencia Molecular , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/inmunología , Fosforilación , Reacción en Cadena de la Polimerasa , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Transfección
2.
J Neurochem ; 61(1): 57-67, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8515288

RESUMEN

Aberrant elevations in intracellular calcium levels, promoted by the excitatory amino acid glutamate, may be a final common mediator of the neuronal damage that occurs in hypoxic-ischemic and seizure disorders. Glutamate and altered neuronal calcium homeostasis have also been proposed to play roles in more chronic neurodegenerative disorders, including Alzheimer's disease. Any extrinsic factors that may augment calcium levels during such disorders may significantly exacerbate the resulting damage. Glucocorticoids (GCs), the adrenal steroid hormones released during stress, may represent one such extrinsic factor. GCs can exacerbate hippocampal damage induced by excitotoxic seizures and hypoxia-ischemia, and we have observed recently that GCs elevate intracellular calcium levels in hippocampal neurons. We now report that the excitotoxin kainic acid (KA) can elicit antigenic changes in the microtubule-associated protein tau similar to those seen in the neurofibrillary tangles of Alzheimer's disease. KA induced a transient increase in the immunoreactivity of hippocampal CA3 neurons towards antibodies that recognize aberrant forms of tau (5E2 and Alz-50). The tau immunoreactivity appeared within 3 h of KA injection, preceded extensive neuronal damage, and subsequently disappeared as neurons degenerated. KA also caused spectrin breakdown, indicating the involvement of calcium-dependent proteases. Physiological concentrations of corticosterone (the species-typical GC of rats) enhanced the neuronal damage induced by KA and, critically, enhanced the intensity of tau immunoreactivity and spectrin breakdown. Moreover, the GC enhancement of spectrin proteolysis was prevented by energy supplementation, supporting the hypothesis that GC disruption of calcium homeostasis in the hippocampus is energetic in nature. Taken together, these findings demonstrate that neurofibrillary tangle-like alterations in tau, and spectrin breakdown, can be induced by excitatory amino acids and exacerbated by GCs in vivo.


Asunto(s)
Corticosterona/farmacología , Hipocampo/metabolismo , Ácido Kaínico/farmacología , Péptido Hidrolasas/metabolismo , Espectrina/metabolismo , Proteínas tau/metabolismo , Animales , Sinergismo Farmacológico , Inmunohistoquímica , Masculino , Manosa/farmacología , Ratas , Ratas Sprague-Dawley
3.
J Neurochem ; 59(3): 1033-40, 1992 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-1645163

RESUMEN

Corticosterone, a steroid secreted during stress, increases hippocampal neuronal vulnerability to excitotoxins, hypoxia-ischemia, and antimetabolites. Energy supplementation and N-methyl-D-aspartate receptor antagonists prevent this corticosterone-enhanced neurotoxicity. Because neuronal calcium regulation is energy dependent and a large calcium influx accompanies N-methyl-D-aspartate receptor activation, we investigated whether corticosterone exacerbates the elevation of hippocampal neuronal calcium induced by the glutamatergic excitotoxin kainic acid. Corticosterone caused a 23-fold increase in the magnitude of the calcium response to kainic acid, a sevenfold increase in the peak magnitude of the calcium response, and a twofold increase in calcium recovery time. This corticosterone effect may be energetic in nature as corticosterone decreases hippocampal neuronal glucose transport. Glucose supplementation reduced the corticosterone effect on the magnitude and peak magnitude of the calcium response to kainic acid. Glucose reduction, by the approximate magnitude by which corticosterone inhibits glucose transport, mimicked the corticosterone effect on the peak magnitude of the calcium response to kainic acid. Thus, corticosterone increases calcium after kainic acid exposure in hippocampal neurons in an energy-dependent manner. Elevated calcium is strongly implicated in stimulating neurotoxic cascades during other energetic insults and may be the mechanism for the corticosterone-induced hippocampal neuronal vulnerability and toxicity.


Asunto(s)
Calcio/metabolismo , Corticosterona/farmacología , Hipocampo/metabolismo , Ácido Kaínico/farmacología , Neuronas/metabolismo , Animales , Células Cultivadas , Sinergismo Farmacológico , Glucosa/metabolismo , Glucosa/farmacología , Hipocampo/citología , Concentración Osmolar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA