Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Orthop Res ; 42(3): 598-606, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37804211

RESUMEN

Tendinopathies account for 30% of 102 million annual musculoskeletal injuries occurring annually in the United States. Current treatments, like dry needling, induce microdamage to promote healing but produce mixed success rates. Previously, we showed focused ultrasound can noninvasively create microdamage while preserving mechanical properties in ex vivo murine tendons. This present study compared growth factor, histological, and mechanical effects after focused ultrasound or dry needling treatments in an in vivo murine tendon injury model. Partial Achilles tenotomy was performed in 26 rats. One-week postsurgery, tendons were treated with focused ultrasound (1.5 MHz, 1-ms pulses at 10 Hz for 106 s, p+ = 49 MPa, p- = 19 MPa) or dry needling (30 G needle, 5 fenestrations over 20 s) and survived for 1 additional week. Blood was collected immediately before and after treatment and before euthanasia; plasma was assayed for growth factors. Treated tendons and contralateral controls were harvested for histology or mechanical testing. No differences were found between treatments in release of insulin growth factor 1 and transforming growth factor beta; vascular endothelial growth factor A concentrations were too low for detection. Histologically, focused ultrasound and dry needling tendons displayed localized fibroblast infiltration without collagen proliferation with no detectable differences between treatments. Mechanically, stiffness and percent relaxation of dry needling tendons were lower than controls (p = 0.0041, p = 0.0441, respectively), whereas stiffness and percent relaxation of focused ultrasound tendons were not different from controls. These results suggest focused ultrasound should be studied further to determine how this modality can be leveraged as a therapy for tendinopathies.


Asunto(s)
Tendón Calcáneo , Tendinopatía , Ratas , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular , Modelos Animales de Enfermedad , Inducción Percutánea del Colágeno , Tendinopatía/terapia , Tendinopatía/patología , Tendón Calcáneo/lesiones
2.
J Biomech ; 132: 110934, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34995989

RESUMEN

Tendon injuries are extremely common, resulting in mechanically weaker tendons that could lead to tendon rupture. Dry needling (DN) is widely used to manage pain and function after injury. However, DN is invasive and high inter-practitioner variability has led to mixed success rates. Focused ultrasound (fUS) is a non-invasive medical technology that directs ultrasound energy into a well-defined focal volume. fUS can induce thermal ablation or mechanical fractionation, with bioeffect type controlled through ultrasound parameters. Tendons must withstand high physiological loads, thus treatments maintaining tendon mechanical properties while promoting healing are needed. Our objective was to evaluate mechanical effects of DN and 3 fUS parameter sets, chosen to prioritize mechanical fractionation, on Achilles and supraspinatus tendons. Ex vivo rat Achilles and supraspinatus tendons (50 each) were divided into sham, DN, fUS-1, fUS-2, and fUS-3 (n = 10/group). Following treatment, tendons were mechanically tested. Elastic modulus of supraspinatus tendons treated with DN (126.64 ± 28.1 MPa) was lower than sham (153.02 ± 29.3 MPa; p = 0.0280). Stiffness and percent relaxation of tendons treated with DN (Achilles: 114.40 ± 31.6 N/mm; 49.10 ± 6.1%; supraspinatus: 109.53 ± 30.8 N/mm; 50.17 ± 7.6%) were lower (all p < 0.0334) than sham (Achilles: 141.34 ± 20.9 N/mm; 60.30 ± 7.7%; supraspinatus: 135.14 ± 30.2 N/mm; 60.85 ± 15.4%). Modulus of Achilles and supraspinatus tendons treated with fUS-1 (159.88 ± 25.7 MPa; 150.12 ± 22.0 MPa, respectively) were similar to sham (156.35 ± 23.0 MPa; 153.02 ± 29.3 MPa, respectively). These results suggest that fUS preserves mechanical properties better than DN, with fUS-1 performing better than fUS-2 and fUS-3. fUS should be studied further to fully understand its mechanical and healing effects to help evaluate fUS as an alternative, non-invasive treatment for tendon injuries.


Asunto(s)
Tendón Calcáneo , Punción Seca , Traumatismos de los Tendones , Tendón Calcáneo/fisiología , Animales , Fenómenos Biomecánicos , Ratas , Manguito de los Rotadores , Traumatismos de los Tendones/diagnóstico por imagen , Traumatismos de los Tendones/terapia , Cicatrización de Heridas
3.
Artículo en Inglés | MEDLINE | ID: mdl-33891552

RESUMEN

Around 30 million tendon injuries occur annually in the U.S. costing $ 114 billion. Conservative therapies, like dry needling, promote healing in chronically injured tendons by inducing microdamage but have mixed success rates. Focused ultrasound (fUS) therapy can noninvasively fractionate tissues through the creation, oscillation, and collapse of bubbles in a process termed histotripsy; however, highly collagenous tissues, like tendon, have shown resistance to mechanical fractionation. This study histologically evaluates whether fUS mechanical disruption is achievable in tendons. Ex vivo rat tendons (45 Achilles and 44 supraspinatus) were exposed to 1.5-MHz fUS operating with 0.1-10 ms pulses repeated at 1-100 Hz for 15-60 s with peak positive pressures <89 MPa and peak negative pressures <26 MPa; other tendons were exposed to dry needling or sham. Immediately after treatment, tendons were flash-frozen and stained with hematoxylin and eosin (H&E) or alpha-nicotinamide adenine dinucleotide diaphorase ( α -NADH-d) and evaluated by two reviewers blinded to the exposure conditions. Results showed successful creation of bubbles for all fUS-treated samples; however, not all samples showed histological injury. When the injury was detected, parameter sets with shorter pulses (0.1-1 ms), lower acoustic pressures, or reduced treatment times showed mechanical disruption in the form of fiber separation and fraying with little to no thermal injury. Longer pulses or treatment times showed a combination of mechanical and thermal injury. These findings suggest that mechanical disruption is achievable in tendons within a small window of acoustic parameters, supporting the potential of fUS therapy in tendon treatment.


Asunto(s)
Tendón Calcáneo , Ultrasonido Enfocado de Alta Intensidad de Ablación , Traumatismos de los Tendones , Animales , Ratas , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA