Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38398667

RESUMEN

The primary goal of this study was to generate different kinds of functional products based on carrots that were supplemented with lactic acid bacteria. The fact that carrots (Daucus carota sp.) rank among the most popular vegetables in our country led to the convergence of the research aim. Their abundance of bioactive compounds, primarily polyphenols, flavonoids, and carotenoids, offers numerous health benefits. Among the obtained products, the freeze-dried carrot powder (FDCP) variation presented the highest concentrations of total carotenoids (TCs) and ß-carotene (BC) of 26.977 ± 0.13 mg/g DW and 22.075 ± 0.14 mg/g DW, respectively. The amount of total carotenoids and ß-carotene significantly increased with the addition of the selected lactic acid bacteria (LAB) for most of the samples. In addition, a slight increase in the antioxidant activity compared with the control sample for the FDCP variant, with the highest value of 91.74%, was observed in these functional food products. The content of polyphenolic compounds varied from 0.044 to 0.091 mg/g DW, while the content of total flavonoids varied from 0.03 to 0.66 mg/g DW. The processing method had an impact on the population of L. plantarum that survived, as indicated by the viability of bacterial cells in all the analyzed products. The chromatographic analysis through UHPLC-MS/MS further confirmed the abundance of the bioactive compounds and their corresponding derivatives by revealing 19 different compounds. The digestibility study indicated that carotenoid compounds from carrots followed a rather controlled release. The carrot-based products enriched with Lactobacillus plantarum can be considered newly functional developed products based on their high content of biologically active compounds with beneficial effects upon the human body. Furthermore, these types of products could represent innovative products for every related industry such as the food, pharmaceutical, and cosmeceutical industries, thus converging a new strategy to improve the health of consumers or patients.


Asunto(s)
Daucus carota , Lactobacillus plantarum , Humanos , beta Caroteno/análisis , Daucus carota/química , Espectrometría de Masas en Tándem , Carotenoides/análisis , Flavonoides
2.
J Food Sci ; 88(12): 5026-5043, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37872831

RESUMEN

In this study, a comprehensive approach to advance the inhibitory effect of Hibiscus sabdariffa extract on apple polyphenol oxidase (PPO) was performed. PPO was extracted, purified, and characterized for optimal activity, whereas response surface methodology generated a quadratic polynomial model to fit the experimental results for hibiscus extraction. The optimum conditions allowed to predict a maximum recovery of anthocyanins (256.11 mg delphinidin-3-O-glucoside/g), with a validated value of 272.87 mg delphinidin-3-O-glucoside/g dry weight (DW). The chromatographic methods highlighted the presence of gallic acid (36,812.90 µg/g DW extract), myricetin (141,933.84 µg/g DW extract), caffeic acid (101,394.07 µg/g DW extract), sinapic acid (1157.46 µg/g DW extract), kaempferol (2136.76 µg/g DW extract), and delphinidin 3-O-ß-d-glucoside (226,367.08 µg/g DW extract). The inactivation of PPO followed a first-order kinetic model. A temperature-mediated flexible fit between PPO and anthocyanins was suggested, whereas the molecular docking tests indicated that PPO is a good receptor for cafestol, gallic acid, and catechin, involving hydrophobic and hydrogen bond interactions. PRACTICAL APPLICATION: It is well known that enzymatic browning is one of the most important challenges in the industrial minimal processing of selected fruit and vegetable products. Novel inhibitors for polyphenol oxidase are proposed in this study by using an anthocyanin-enriched extract from Hibiscus sabdariffa L. Based on our results, combining the chemical effect of phytochemicals from hibiscus extract with different functional groups with minimal heating could be an interesting approach for the development of a new strategy to inhibit apple polyphenol oxidase.


Asunto(s)
Antocianinas , Hibiscus , Antocianinas/análisis , Hibiscus/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Catecol Oxidasa , Simulación del Acoplamiento Molecular , Ácido Gálico , Glucósidos
3.
Molecules ; 26(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925173

RESUMEN

Two multi-functional powders, in terms of anthocyanins from black rice (Oryza sativa L.) and lactic acid bacteria (Lactobacillus paracasei, L. casei 431®) were obtained through co-microencapsulation into a biopolymer matrix composed of milk proteins and inulin. Two extracts were obtained using black rice flour as a raw material and hot water and ethanol as solvents. Both powders (called P1 for aqueous extract and P2 for ethanolic extract) proved to be rich sources of valuable bioactives, with microencapsulation efficiency up to 80%, both for anthocyanins and lactic acid bacteria. A higher content of anthocyanins was found in P1, of 102.91 ± 1.83 mg cyanindin-3-O-glucoside (C3G)/g dry weight (DW) when compared with only 27.60 ± 17.36 mg C3G/g DW in P2. The morphological analysis revealed the presence of large, thin, and fragile structures, with different sizes. A different pattern of gastric digestion was observed, with a highly protective effect of the matrix in P1 and a maximum decrease in anthocyanins of approximatively 44% in P2. In intestinal juice, the anthocyanins decreased significantly in P2, reaching a maximum of 97% at the end of digestion; whereas in P1, more than 45% from the initial anthocyanins content remained in the microparticles. Overall, the short-term storage stability test revealed a release of bioactive from P2 and a decrease in P1. The viable cells of lactic acid bacteria after 21 days of storage reached 7 log colony forming units (CFU)/g DW.


Asunto(s)
Antocianinas/química , Antocianinas/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Lactobacillales/química , Oryza/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Composición de Medicamentos , Estabilidad de Medicamentos , Polvos
4.
J Food Sci ; 85(12): 4290-4299, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33175407

RESUMEN

Our study describes in detail the binding mechanism between the main flavonoids that were extracted from onion skins by supercritical CO2 and peptides from whey proteins, from the perspective of obtaining multifunctional ingredients, with health-promoting benefits. The supercritical CO2 extract had 202.31 ± 11.56 mg quercetin equivalents/g DW as the major flavonoid and antioxidant activity of 404.93±1.39 mM Trolox/g DW. The experiments on thermolysin-derived peptides fluorescence quenching by flavonoids extract allowed estimating the binding parameters, in terms of binding constants, and the number of binding sites. The thermodynamic analysis indicated that the main forces involved in complex formation were hydrogen bonds and van der Waals interactions. Molecular docking tests indicated that peptide fluorescence quenching upon gradual addition of onion skin extract might be due to flavonoids binding by Val15 -Ser21 . All 7 to 14 amino acids long peptides appeared to have affinity toward quercetin-3,4'-O-diglucoside and quercetin-4'-O-monoglucoside. The study is important as a potential solution for reuse of valuable resources, underutilized, such as whey peptides and yellow onion skins flavonoids for efficient microencapsulation, as a holistic approach to deliver healthy and nutritious food. PRACTICAL APPLICATION: A growing interest was noticed in the last years in investigating the interactions between proteins and different biologically active compounds, such as to provide knowledge for efficient development of new food, pharmaceutical, and cosmetic products. Recent studies suggest that flavonoid-protein complexes may be designed to improve the functional performance of the flavonoids. The results obtained in this study bring certain benefits in terms of exploiting the bioactive potential of both flavonoids and bioactive peptides, for developing of formulas with improved functional properties.


Asunto(s)
Antioxidantes/química , Flavonoides/química , Lactoglobulinas/química , Cebollas/química , Péptidos/química , Animales , Antioxidantes/aislamiento & purificación , Sitios de Unión , Bovinos , Cromatografía con Fluido Supercrítico , Flavonoides/aislamiento & purificación , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Péptidos/aislamiento & purificación , Unión Proteica , Quercetina/química , Quercetina/aislamiento & purificación
5.
Molecules ; 25(10)2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456245

RESUMEN

Oleoresin supercritical extracts from sea buckthorn were microencapsulated in whey proteins isolate and casein, in two states: native (N) and cross-linked mediated by transglutaminase (TG). The encapsulation efficiency showed values higher than 92% for total carotenoids and lycopene. Phytochemicals content was 352.90 ± 1.02 mg/g dry weight (DW) for total carotenoids in TG and 302.98 ± 2.30 mg/g DW in N, with antioxidant activity of 703.13 ± 23.60 mMol Trolox/g DW and 608.74 ± 7.12 mMol Trolox/g DW, respectively. Both powders had an inhibitory effect on α-glucosidase, of about 40% for N and 35% for TG. The presence of spherosomes was highlighted, with sizes ranging between 15.23-73.41 µm and an agglutination tendency in N, and lower sizes, up to 35 µm in TG. The in vitro digestibility revealed a prolonged release in an intestinal environment, up to 65% for TG. Moisture sorption isotherms were studied at 20 °C and the shape of curves corresponds to sigmoidal type II model. The presence of cross-linked mediated aggregates in TG powders improved stability and flowability. Our results can be used as evidence that cross-linked aggregates mediated by transglutaminase applied for microencapsulation of oleoresins have the potential to become new delivery systems, for carotenoids and lycopene, being valuable in terms of their attractive color and biological and bioaccessibility properties.


Asunto(s)
Dióxido de Carbono/química , Hippophae/química , Extractos Vegetales/química , Composición de Medicamentos
6.
Molecules ; 25(7)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276335

RESUMEN

Anthocyanins from black currant extract and lactic acid bacteria were co-microencapsulated using a gastro-intestinal-resistant biocomposite of whey protein isolate, inulin, and chitosan, with an encapsulation efficiency of 95.46% ± 1.30% and 87.38% ± 0.48%, respectively. The applied freeze-drying allowed a dark purple stable powder to be obtained, with a satisfactory content of phytochemicals and 11 log colony forming units (CFU)/g dry weight of powder (DW). Confocal laser microscopy displayed a complex system, with several large formations and smaller aggregates inside, consisting of biologically active compounds, lactic acid bacteria cells, and biopolymers. The powder showed good storage stability, with no significant changes in phytochemicals and viable cells over 3 months. An antioxidant activity of 63.64 ± 0.75 mMol Trolox/g DW and an inhibitory effect on α-amylase and α-glucosidase of 87.10% ± 2.08% and 36.96% ± 3.98%, respectively, highlighted the potential biological activities of the co-microencapsulated powder. Significantly, the in vitro digestibility profile showed remarkable protection in the gastric environment, with controlled release in the intestinal simulated environment. The powder was tested by addition into a complex food matrix (yogurt), and the results showed satisfactory stability of biologically active compounds when stored for 21 d at 4 °C. The obtained results confirm the important role of microencapsulation in ensuring a high degree of protection, thus allowing new approaches in developing food ingredients and nutraceuticals, with enhanced functionalities.


Asunto(s)
Antocianinas/química , Biopolímeros/química , Lactobacillales/metabolismo , Extractos Vegetales/química , Ribes/química , Colorimetría , Inhibidores de Glicósido Hidrolasas/farmacología , Fitoquímicos/análisis , Polvos , Factores de Tiempo , Yogur , alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo
7.
Food Chem ; 318: 126508, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32146312

RESUMEN

This work was aimed to obtain lactoferrin peptides, with anthocyanins-binding capabilities, by using eggplant peels extract as a source of anthocyanins. The chromatographic analysis of the extract evidenced the presence of five individual anthocyanins, with delfinidin-3-rutinoside being identified as the predominant. 20 small peptides were identified, from which four are containing Trp at C-terminal. By estimating the thermodynamic parameters, van der Waals and hydrogen bonding were found to have important roles in binding of anthocyanins to LF and LF-derived peptides. In order to complement the experimental results, the in silico methods were further employed to add single molecule level details on the potential interactions between different peptides and the main anthocyanins from eggplant peels. The docking tests indicated that the Trp containing peptides can bind, with different affinities either delphynidine-3-glycoside or delphynidine-3-rutinoside, therefore explaining the fluorescence quenching results. Our results have indicated a mechanism for the interactions between anthocyanins and LF and its small molecular weight peptides, whereas providing insights for formulating ingredients and foods with enhanced bioactives-binding properties.


Asunto(s)
Antocianinas/química , Lactoferrina/química , Péptidos/química , Extractos Vegetales/química , Solanum melongena/química , Animales , Bovinos , Fluorescencia , Enlace de Hidrógeno , Modelos Moleculares , Simulación del Acoplamiento Molecular , Espectrometría de Fluorescencia/métodos , Termodinámica
8.
Molecules ; 25(3)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046151

RESUMEN

Manufacturing beer with a high biological value requires identifying new methods for increasing the health-enhancing compounds level. The aim of this study was to increase the biological value of beer by adding antioxidant-rich eggplant (Solanum melongena L.) peel extract (EPE). The total phenolic content (TPC), total flavonoid content (TFC), and total monomeric anthocyanin content (TMA) were determined. Moreover, the antioxidant activity was evaluated by different radical scavenging assays. The addition of different levels of EPE resulted in a significant increase of TPC and TFC of beer samples from 0.426 to 0.631 mg GAE/mL, and from 0.065 to 0.171 mg CE/mL, respectively. The EPE-supplemented beer samples developed a reddish color because of the presence of anthocyanin pigments. The TMA content of beer varied from 0.011 to 0.083 mg D3G/mL with the level of added EPE. The HPLC analysis indicated that the anthocyanins prevailing in the eggplant peels were delphinidin-3-rutinoside, delphininidin-3-glucoside and delphinidin-3-rutinoside-5-glucoside. The radical scavenging assays indicated a linear increase of the antioxidant activity following EPE addition, without altering the physicochemical parameters of the beer. These results are promising for using the EPE as a functional ingredient for beer production.


Asunto(s)
Cerveza , Extractos Vegetales/química , Solanum melongena/química , Antocianinas/química , Antioxidantes/química , Cromatografía Líquida de Alta Presión/métodos , Color , Flavonoides/química , Hipersensibilidad a los Alimentos , Frutas/química , Glucósidos/química , Fenoles/química , Pigmentos Biológicos/química
9.
Molecules ; 24(18)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540422

RESUMEN

The aqueous anthocyanin-rich extract derived from black rice (Oryza sativa L.) was encapsulated by freeze drying using milk proteins and peptides as coating materials. The molecular modelling approach indicated that all major casein fractions and whey proteins were able to bind at least one anthocyanin molecule. The hydrophobic interactions and hydrogen bonding across the interfaces appeared to be mainly responsible for the stabilizations of the complexes formed between the coating material and bioactive compounds. Two dark purple colored powders, differentiated by the ratio of the encapsulation materials used, rich in phytochemicals were obtained, with an encapsulation efficiency of up to 99%. The powders were tested for antioxidant activity, cytocompatibility, and thermal stability. The morphological structure of the powders highlighted the presence of encapsulated anthocyanins. Both powders showed a remarkable antioxidant activity of about 46 mM Trolox/g D.W., and cytocompatibility on the L929 fibroblast culture. At certain concentrations, both powders stimulated cell proliferation. The powders showed a good thermal stability between 75 and 100 °C for 15 min. The powders were tested in a food model system and checked for stability of phytochemicals during storage. The added value of the powders was demonstrated throughout the antioxidant activity, which remained unchanged during storage.


Asunto(s)
Antocianinas , Proliferación Celular/efectos de los fármacos , Fibroblastos/metabolismo , Oryza/química , Extractos Vegetales , Animales , Antocianinas/química , Antocianinas/farmacología , Cápsulas , Línea Celular , Fibroblastos/citología , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Extractos Vegetales/química , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA