Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phytomedicine ; 128: 155493, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484626

RESUMEN

BACKGROUND: ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE: We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS: Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS: Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS: ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proteínas Inhibidoras de la Diferenciación , Neoplasias Pulmonares , Proteínas de Neoplasias , Silibina , Silibina/farmacología , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Humanos , Animales , Línea Celular Tumoral , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Desnudos , Receptores de Activinas Tipo I/metabolismo , Receptores de Activinas Tipo I/genética , Silimarina/farmacología , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Morfogenética Ósea 6 , Silybum marianum/química , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Femenino
2.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681946

RESUMEN

Fritillaria bulbs are used in Traditional Chinese Medicine to treat several illnesses. Peimine (Pm), an anti-inflammatory compound from Fritillaria, is known to inhibit some voltage-dependent ion channels and muscarinic receptors, but its interaction with ligand-gated ion channels remains unexplored. We have studied if Pm affects nicotinic acetylcholine receptors (nAChRs), since they play broad functional roles, both in the nervous system and non-neuronal tissues. Muscle-type nAChRs were incorporated to Xenopus oocytes and the action of Pm on the membrane currents elicited by ACh (IAChs) was assessed. Functional studies were combined with virtual docking and molecular dynamics assays. Co-application of ACh and Pm reversibly blocked IACh, with an IC50 in the low micromolar range. Pm inhibited nAChR by: (i) open-channel blockade, evidenced by the voltage-dependent inhibition of IAch, (ii) enhancement of nAChR desensitization, revealed by both an accelerated IACh decay and a decelerated IACh deactivation, and (iii) resting-nAChR blockade, deduced from the IACh inhibition elicited by Pm when applied before ACh superfusion. In good concordance, virtual docking and molecular dynamics assays demonstrated that Pm binds to different sites at the nAChR, mostly at the transmembrane domain. Thus, Pm from Fritillaria bulbs, considered therapeutic herbs, targets nAChRs with high affinity, which might account for its anti-inflammatory actions.


Asunto(s)
Antiinflamatorios/farmacología , Cevanas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Músculos/efectos de los fármacos , Oocitos/efectos de los fármacos , Extractos Vegetales/farmacología , Receptores Nicotínicos/metabolismo , Animales , Medicamentos Herbarios Chinos/farmacología , Músculos/metabolismo , Oocitos/metabolismo , Receptores Nicotínicos/genética , Xenopus laevis
3.
Food Chem Toxicol ; 144: 111606, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32738368

RESUMEN

Polyphenols from Hibiscus sabdariffa (HS) alleviate obesity-related metabolic complications but the metabolites responsible for such effects are unknown. We aimed to elucidate which of the potential plasma metabolites from a polyphenol-enriched HS (PEHS) extract contributed for the reversion of glucolipotoxicity-induced metabolic stress using 3T3-L1 adipocyte and INS 832/13 pancreatic ß-cell models under glucolipotoxic conditions. PEHS extract, quercetin (Q) and quercetin-3-O-glucuronide (Q3GA) showed stronger capacity to decrease glucolipotoxicity-induced ROS generation than ascorbic acid or chlorogenic acid. PEHS extract, Q and Q3GA decreased secretion of cytokines (leptin, TNF-α, IGF-1, IL-6, VEGF, IL-1α, IL-1ß and CCL2) and reduced CCL2 expression at transcriptional level. In addition, PEHS extract, Q and Q3GA reduced triglyceride accumulation, which occurred through fatty acid synthase (FASN) downregulation, AMPK activation and mitochondrial mass and biogenesis restoration via PPARα upregulation. Electron microscopy confirmed that PEHS extract and Q3GA decreased mitochondrial remodeling and mitophagy. Virtual screening leads us to postulate that Q and Q3GA might act as agonists of these protein targets at specific sites. These data suggest that Q and Q3GA may be the main responsible compounds for the capacity of PEHS extract to revert glucolipotoxicity-induced metabolic stress through AMPK-mediated decrease in fat storage and increase in fatty acid oxidation, though other compounds of the extract may contribute to this capacity.


Asunto(s)
Glucosa/toxicidad , Hibiscus/metabolismo , Extractos Vegetales/farmacología , Quercetina/metabolismo , Estrés Fisiológico/efectos de los fármacos , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipoquinas/metabolismo , Animales , Quimiocina CCL2/metabolismo , Hibiscus/química , Técnicas In Vitro , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas
4.
Curr Med Chem ; 27(15): 2576-2606, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30295182

RESUMEN

BACKGROUND: Multi-drug-resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA) disseminate rapidly amongst patients in healthcare facilities and suppose an increasingly important cause of community-associated infections and associated mortality. The development of effective therapeutic options against resistant bacteria is a public health priority. Plant polyphenols are structurally diverse compounds that have been used for centuries for medicinal purposes, including infections treatment and possess, not only antimicrobial activity, but also antioxidant, anti-inflammatory and anticancer activities among others. Based on the existing evidence on the polyphenols' antibacterial capacity, polyphenols may be postulated as an alternative or complementary therapy for infectious diseases. OBJECTIVE: To review the antimicrobial activity of plant polyphenols against Gram-positive bacteria, especially against S. aureus and its resistant strains. Determine the main bacterial molecular targets of polyphenols and their potential mechanism of action. METHODOLOGY: The most relevant reports on plant polyphenols' antibacterial activity and their putative molecular targets were studied. We also performed virtual screening of thousand different polyphenols against proteins involved in the peptidoglycan biosynthesis to find potential valuable bioactive compounds. The bibliographic information used in this review was obtained from MEDLINE via PubMed. RESULTS: Several polyphenols: phenolic acids, flavonoids (especially flavonols), tannins, lignans, stilbenes and combinations of these in botanical mixtures, have exhibited significant antibacterial activity against resistant and non-resistant Gram-positive bacteria at low µg/mL range MIC values. Their mechanism of action is quite diverse, targeting cell wall, lipid membrane, membrane receptors and ion channels, bacteria metabolites and biofilm formation. Synergic effects were also demonstrated for some combinations of polyphenols and antibiotics. CONCLUSION: Plant polyphenols mean a promising source of antibacterial agents, either alone or in combination with existing antibiotics, for the development of new antibiotic therapies.


Asunto(s)
Antibacterianos/uso terapéutico , Polifenoles , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales
5.
Curr Drug Metab ; 19(4): 351-369, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29468962

RESUMEN

BACKGROUND: Hibiscus sabdariffa, Lippia citriodora, Rosmarinus officinalis and Olea europaea, are rich in bioactive compounds that represent most of the phenolic compounds' families and have exhibited potential benefits in human health. These plants have been used in folk medicine for their potential therapeutic properties in human chronic diseases. Recent evidence leads to postulate that polyphenols may account for such effects. Nevertheless, the compounds or metabolites that are responsible for reaching the molecular targets are unknown. OBJECTIVE: data based on studies directly using complex extracts on cellular models, without considering metabolic aspects, have limited applicability. In contrast, studies exploring the absorption process, metabolites in the blood circulation and tissues have become essential to identify the intracellular final effectors that are responsible for extracts bioactivity. Once the cellular metabolites are identified using high-resolution mass spectrometry, docking techniques suppose a unique tool for virtually screening a large number of compounds on selected targets in order to elucidate their potential mechanisms. RESULTS: we provide an updated overview of the in vitro and in vivo studies on the toxicity, absorption, permeability, pharmacokinetics and cellular metabolism of bioactive compounds derived from the abovementioned plants to identify the potential compounds that are responsible for the observed health effects. CONCLUSION: we propose the use of targeted metabolomics followed by in silico studies to virtually screen identified metabolites on selected protein targets, in combination with the use of the candidate metabolites in cellular models, as the methods of choice for elucidating the molecular mechanisms of these compounds.


Asunto(s)
Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas/química , Polifenoles/química , Polifenoles/farmacología , Animales , Humanos , Extractos Vegetales/metabolismo , Polifenoles/metabolismo
6.
Nutrients ; 9(8)2017 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-28825642

RESUMEN

Improper diet can alter gene expression by breaking the energy balance equation and changing metabolic and oxidative stress biomarkers, which can result in the development of obesity-related metabolic disorders. The pleiotropic effects of dietary plant polyphenols are capable of counteracting by modulating different key molecular targets at the cell, as well as through epigenetic modifications. Hibiscus sabdariffa (HS)-derived polyphenols are known to ameliorate various obesity-related conditions. Recent evidence leads to propose the complex nature of the underlying mechanism of action. This multi-targeted mechanism includes the regulation of energy metabolism, oxidative stress and inflammatory pathways, transcription factors, hormones and peptides, digestive enzymes, as well as epigenetic modifications. This article reviews the accumulated evidence on the multiple anti-obesity effects of HS polyphenols in cell and animal models, as well as in humans, and its putative molecular targets. In silico studies reveal the capacity of several HS polyphenols to act as putative ligands for different digestive and metabolic enzymes, which may also deserve further attention. Therefore, a global approach including integrated and networked omics techniques, virtual screening and epigenetic analysis is necessary to fully understand the molecular mechanisms of HS polyphenols and metabolites involved, as well as their possible implications in the design of safe and effective polyphenolic formulations for obesity.


Asunto(s)
Antioxidantes/administración & dosificación , Hibiscus/química , Obesidad/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Polifenoles/administración & dosificación , Animales , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Epigénesis Genética , Humanos , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Extractos Vegetales/farmacología , Polifenoles/farmacología , Distribución Tisular
7.
Molecules ; 22(7)2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28644406

RESUMEN

Marine secondary metabolites are a promising source of unexploited drugs that have a wide structural diversity and have shown a variety of biological activities. These compounds are produced in response to the harsh and competitive conditions that occur in the marine environment. Invertebrates are considered to be among the groups with the richest biodiversity. To date, a significant number of marine natural products (MNPs) have been established as antineoplastic drugs. This review gives an overview of MNPs, both in research or clinical stages, from diverse organisms that were reported as being active or potentially active in cancer treatment in the past seventeen years (from January 2000 until April 2017) and describes their putative mechanisms of action. The structural diversity of MNPs is also highlighted and compared with the small-molecule anticancer drugs in clinical use. In addition, this review examines the use of virtual screening for MNP-based drug discovery and reveals that classical approaches for the selection of drug candidates based on ADMET (absorption, distribution, metabolism, excretion, and toxicity) filtering may miss potential anticancer lead compounds. Finally, we introduce a novel and publically accessible chemical library of MNPs for virtual screening purposes.


Asunto(s)
Antineoplásicos/química , Organismos Acuáticos/química , Productos Biológicos/química , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Agua de Mar , Animales , Antineoplásicos/farmacología , Biodiversidad , Productos Biológicos/farmacología , Ensayos Clínicos como Asunto , Humanos , Estructura Molecular
8.
PLoS One ; 12(3): e0173074, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28278224

RESUMEN

SCOPE: Olive-tree polyphenols have demonstrated potential for the management of obesity-related pathologies. We aimed to explore the capacity of Olive-tree leaves extract to modulate triglyceride accumulation and AMP-activated protein kinase activity (AMPK) on a hypertrophic adipocyte model. METHODS: Intracellular triglycerides and AMPK activity were measured on the hypertrophic 3T3-L1 adipocyte model by AdipoRed and immunofluorescence microscopy, respectively. Reverse phase high performance liquid chromatography coupled to time-of-flight mass detection with electrospray ionization (RP-HPLC-ESI-TOF/MS) was used for the fractionation of the extract and the identification of the compounds. In-silico molecular docking of the AMPK alpha-2, beta and gamma subunits with the identified compounds was performed. RESULTS: Olive-tree leaves extract decreased the intracellular lipid accumulation through AMPK-dependent mechanisms in hypertrophic adipocytes. Secoiridoids, cinnamic acids, phenylethanoids and phenylpropanoids, flavonoids and lignans were the candidates predicted to account for this effect. Molecular docking revealed that some compounds may be AMPK-gamma modulators. The modulatory effects of compounds over the alpha and beta AMPK subunits appear to be less probable. CONCLUSIONS: Olive-tree leaves polyphenols modulate AMPK activity, which may become a therapeutic aid in the management of obesity-associated disturbances. The natural occurrence of these compounds may have important nutritional implications for the design of functional ingredients.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Olea/química , Polifenoles/farmacología , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/análisis , Proteínas Quinasas Activadas por AMP/química , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Sitios de Unión , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Ratones , Microscopía Fluorescente , Simulación del Acoplamiento Molecular , Olea/metabolismo , Extractos Vegetales/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Polifenoles/química , Polifenoles/aislamiento & purificación , Polifenoles/metabolismo , Estructura Terciaria de Proteína , Subunidades de Proteína/análisis , Subunidades de Proteína/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Triglicéridos/análisis , Triglicéridos/metabolismo
9.
Drug Des Devel Ther ; 9: 5877-95, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26604687

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) is a well-characterized member of the PPAR family that is predominantly expressed in adipose tissue and plays a significant role in lipid metabolism, adipogenesis, glucose homeostasis, and insulin sensitization. Full agonists of synthetic thiazolidinediones (TZDs) have been therapeutically used in clinical practice to treat type 2 diabetes for many years. Although it can effectively lower blood glucose levels and improve insulin sensitivity, the administration of TZDs has been associated with severe side effects. Based on recent evidence obtained with plant-derived polyphenols, the present in silico study aimed at finding new selective human PPARγ (hPPARγ) modulators that are able to improve glucose homeostasis with reduced side effects compared with TZDs. Docking experiments have been used to select compounds with strong binding affinity (ΔG values ranging from -10.0±0.9 to -11.4±0.9 kcal/mol) by docking against the binding site of several X-ray structures of hPPARγ. These putative modulators present several molecular interactions with the binding site of the protein. Additionally, most of the selected compounds have favorable druggability and good ADMET properties. These results aim to pave the way for further bench-scale analysis for the discovery of new modulators of hPPARγ that do not induce any side effects.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , PPAR gamma/efectos de los fármacos , Polifenoles/farmacología , Sitios de Unión , Glucemia/efectos de los fármacos , Simulación por Computador , Diabetes Mellitus Tipo 2/fisiopatología , Diseño de Fármacos , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/aislamiento & purificación , Insulina/metabolismo , Resistencia a la Insulina , Simulación del Acoplamiento Molecular , PPAR gamma/metabolismo , Plantas Medicinales/química , Polifenoles/efectos adversos , Polifenoles/aislamiento & purificación , Tiazolidinedionas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA