Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Phys ; 50(11): 7245-7251, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37334736

RESUMEN

BACKGROUND: Hydrated electrons, which are short-lived products of radiolysis in water, increase the optical absorption of water, providing a pathway toward near-tissue-equivalent clinical radiation dosimeters. This has been demonstrated in high-dose-per-pulse radiochemistry research, but, owing to the weak absorption signal, its application in existing low-dose-per-pulse radiotherapy provided by clinical linear accelerators (linacs) has yet to be investigated. PURPOSE: The aims of this study were to measure the optical absorption associated with hydrated electrons produced by clinical linacs and to assess the suitability of the technique for radiotherapy (⩽ 1 cGy per pulse) applications. METHODS: 40 mW of 660-nm laser light was sent five passes through deionized water contained in a 10 × 4 × $\times 4\times$ 2 cm3 glass-walled cavity by using four broadband dielectric mirrors, two on each side of the cavity. The light was collected with a biased silicon photodetector. The water cavity was then irradiated by a Varian TrueBeam linac with both photon (10 MV FFF, 6 MV FFF, 6 MV) and electron beams (6 MeV) while monitoring the transmitted laser power for absorption transients. Radiochromic EBT3 film measurements were also performed for comparison. RESULTS: Examination of the absorbance profiles showed clear absorption changes in the water when radiation pulses were delivered. Both the amplitude and the decay time of the signal appeared consistent with the absorbed dose and the characteristics of the hydrated electrons. By using literature value for the hydrated electron radiation chemical yield (3.0±0.3), we inferred doses of 2.1±0.2 mGy (10 MV FFF), 1.3±0.1 mGy (6 MV FFF), 0.45±0.06 mGy (6 MV) for photons, and 0.47±0.05 mGy (6 MeV) for electrons, which differed from EBT3 film measurements by 0.6%, 0.8%, 10%, and 15.7%, respectively. The half-life of the hydrated electrons in the solution was ∼ 24 µ $\umu$ s. CONCLUSIONS: By measuring 660-nm laser light transmitted through a cm-scale, multi-pass water cavity, we observed absorption transients consistent with hydrated electrons generated by clinical linac radiation. The agreement between our inferred dose and EBT3 film measurements suggests this proof-of-concept system represents a viable pathway toward tissue-equivalent dosimeters for clinical radiotherapy applications.


Asunto(s)
Electrones , Dosímetros de Radiación , Fotones/uso terapéutico , Fantasmas de Imagen , Aceleradores de Partículas , Agua , Dosificación Radioterapéutica , Radiometría/métodos
2.
Brachytherapy ; 19(2): 255-263, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31964601

RESUMEN

PURPOSE: Several radionuclides with high (60Co, 75Se) and intermediate (169Yb, 153Gd) energies have been investigated as alternatives to 192Ir for high-dose-rate brachytherapy. The purpose of this study was to evaluate the impact of tissue heterogeneities for these five high- to intermediate-energy sources in prostate and head & neck brachytherapy. METHODS AND MATERIALS: Treatment plans were generated for a cohort of prostate (n = 10) and oral tongue (n = 10) patients. Dose calculations were performed using RapidBrachyMCTPS, an in-house Geant4-based Monte Carlo treatment planning system. Treatment plans were simulated using 60Co, 192Ir, 75Se, 169Yb, and 153Gd as the active core of the microSelectron v2 source. Two dose calculation scenarios were presented: (1) dose to water in water (Dw,w), and (2) dose to medium in medium (Dm,m). RESULTS: Dw,w overestimates planning target volume coverage compared with Dm,m, regardless of photon energy. The average planning target volume D90 reduction was ∼1% for high-energy sources, whereas larger differences were observed for intermediate-energy sources (1%-2% for prostate and 4%-7% for oral tongue). Dose differences were not clinically relevant (<5%) for soft tissues in general. Going from Dw,w to Dm,m, bone doses were increased two- to three-fold for 169Yb and four- to five-fold for 153Gd, whereas the ratio was close to ∼1 for high-energy sources. CONCLUSIONS: Dw,w underestimates the dose to bones and, to a lesser extent, overestimates the dose to soft tissues for radionuclides with average energies lower than 192Ir. Further studies regarding bone toxicities are needed before intermediate-energy sources can be adopted in cases where bones are in close vicinity to the tumor.


Asunto(s)
Huesos , Braquiterapia/métodos , Neoplasias de la Próstata/radioterapia , Radioisótopos/uso terapéutico , Planificación de la Radioterapia Asistida por Computador , Neoplasias de la Lengua/radioterapia , Radioisótopos de Cobalto/uso terapéutico , Simulación por Computador , Gadolinio/uso terapéutico , Humanos , Radioisótopos de Iridio/uso terapéutico , Masculino , Dosis de Radiación , Dosificación Radioterapéutica , Radioisótopos de Selenio/uso terapéutico , Iterbio/uso terapéutico
3.
Int J Radiat Oncol Biol Phys ; 105(4): 875-883, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31330175

RESUMEN

PURPOSE: To investigate differences between prescribed and postimplant calculated dose in 192Ir high-dose-rate endorectal brachytherapy (HDR-EBT) by evaluating dose to clinical target volume (CTV) and organs at risk (OARs) calculated with a Monte Carlo-based dose calculation software, RapidBrachyMC. In addition, dose coverage, conformity, and homogeneity were compared among the radionuclides 192Ir, 75Se, and 169Yb for use in HDR-EBT. METHODS AND MATERIALS: Postimplant dosimetry was evaluated using 23 computed tomography (CT) images from patients treated with HDR-EBT using the 192Ir microSelectron v2 (Elekta AB, Stockholm, Sweden) source and the Intracavitary Mold Applicator Set (Elekta AB, Stockholm, Sweden), which is a flexible applicator capable of fitting a tungsten rod for OAR shielding. Four tissue segmentation schemes were evaluated: (1) TG-43 formalism, (2) materials and nominal densities assigned to contours of foreign objects, (3) materials and nominal densities assigned to contoured organs in addition to foreign objects, and (4) materials specified as in (3) but with voxel mass densities derived from CT Hounsfield units. Clinical plans optimized for 192Ir were used, with the results for 75Se and 169Yb normalized to the D90 of the 192Ir clinical plan. RESULTS: In comparison to segmentation scheme 4, TG-43-based dosimetry overestimates CTV D90 by 6% (P = .00003), rectum D50 by 24% (P = .00003), and pelvic bone D50 by 5% (P = .00003) for 192Ir. For 169Yb, CTV D90 is overestimated by 17% (P = .00003) and rectum D50 by 39% (P = .00003), and pelvic bone D50 is significantly underestimated by 27% (P = .007). Postimplant dosimetry calculations also showed that a 169Yb source would give 20% (P = .00003) lower rectum V60 and 17% (P = .00008) lower rectum D50. CONCLUSIONS: Ignoring high-Z materials in dose calculation contributes to inaccuracies that may lead to suboptimal dose optimization and disagreement between prescribed and calculated dose. This is especially important for low-energy radionuclides. Our results also show that with future magnetic resonance imaging-based treatment planning, loss of CT density data will only affect calculated dose in nonbone OARs by 2% or less and bone OARs by 13% or less across all sources if material composition and nominal mass densities are correctly assigned.


Asunto(s)
Braquiterapia/métodos , Radioisótopos de Iridio/administración & dosificación , Órganos en Riesgo/efectos de la radiación , Radioisótopos/administración & dosificación , Neoplasias del Recto/radioterapia , Radioisótopos de Selenio/administración & dosificación , Iterbio/administración & dosificación , Braquiterapia/instrumentación , Fémur/efectos de la radiación , Humanos , Método de Montecarlo , Órganos en Riesgo/diagnóstico por imagen , Huesos Pélvicos/efectos de la radiación , Dosificación Radioterapéutica , Recto/efectos de la radiación , Tomografía Computarizada por Rayos X , Vejiga Urinaria/efectos de la radiación
4.
Int J Radiat Oncol Biol Phys ; 100(1): 270-277, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29102279

RESUMEN

PURPOSE: Radioisotopes such as 75Se, 169Yb, and 153Gd have photon energy spectra and half-lives that make them excellent candidates as alternatives to 192Ir for high-dose-rate brachytherapy. The aim of the present study was to evaluate the relative biological effectiveness (RBE) of current (192Ir, 125I, 103Pd) and alternative (75Se, 169Yb, 153Gd) brachytherapy radionuclides using Monte Carlo simulations of lineal energy distributions. METHODS AND MATERIALS: Brachytherapy sources (microSelectron v2 [192Ir, 75Se, 169Yb, 153Gd], SelectSeed [125I], and TheraSeed [103Pd]) were placed in the center of a spherical water phantom with a radius of 40 cm using the Geant4 Monte Carlo simulation toolkit. The kinetic energy of all primary, scattered, and fluorescence photons interacting in a scoring volume were tallied at various depths from the source. Electron tracks were generated by sampling the photon interaction spectrum and tracking all the interactions down to 10 eV using the event-by-event capabilities of the Geant4-DNA models. The dose mean lineal energy (y¯D) values were obtained through random sampling of transfer points and overlaying spherical scoring volumes within the associated volume of the tracks. The scoring volume diameter was determined by fitting the y¯D ratio for 125I to its observed RBE. RESULTS: y¯D increased with the increasing distance from the source for 192Ir, 75Se, and 169Yb, remained constant for 153Gd and 125I, and decreased for 103Pd. The diameter at which the y¯D ratio coincided with the RBE of 1.15 to 1.20 for 125I was ∼25 to 40 nm. The RBE (reference 1 MeV photons) at high doses and dose rates for 192Ir, 75Se, 169Yb, 153Gd, 125I, and 103Pd was 1.028 to 1.034, 1.05 to 1.07, 1.12 to 1.15, 1.16 to 1.21, 1.15 to 1.20, and 1.17 to 1.22, respectively. CONCLUSIONS: The radiation quality of the radionuclides under investigation was greater than that of high-energy photons. The present study has provided a set of values to modify the prescription doses for brachytherapy to account for the variation in radiation quality among radionuclides.


Asunto(s)
Braquiterapia , Radioisótopos/uso terapéutico , Dosificación Radioterapéutica , Efectividad Biológica Relativa , Gadolinio/uso terapéutico , Radioisótopos de Yodo/uso terapéutico , Radioisótopos de Iridio/uso terapéutico , Transferencia Lineal de Energía , Método de Montecarlo , Fantasmas de Imagen , Radiometría/métodos , Radioisótopos de Selenio/uso terapéutico , Iterbio/uso terapéutico
5.
Med Phys ; 41(5): 051703, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24784369

RESUMEN

PURPOSE: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). METHODS: A wire-mounted 62 GBq(153)Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 µm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 µm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0-5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. RESULTS: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D(98%)), I-RSBT reduced urethral D(0.1cc) below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D(1cc) was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D(1cc) was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq (153)Gd sources. CONCLUSIONS: For the case considered, the proposed(153)Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%-44% if the clinician allows a urethral dose gradient volume of 0-5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed (153)Gd-based I-RSBT technique in reasonable treatment times.


Asunto(s)
Braquiterapia/instrumentación , Braquiterapia/métodos , Neoplasias de la Próstata/radioterapia , Catéteres , Diseño de Equipo , Gadolinio/uso terapéutico , Humanos , Radioisótopos de Iridio/uso terapéutico , Masculino , Método de Montecarlo , Agujas , Níquel , Compuestos de Platino , Protección Radiológica , Radioisótopos/uso terapéutico , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Recto/efectos de la radiación , Factores de Tiempo , Titanio , Uretra/efectos de la radiación , Vejiga Urinaria/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA