Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36078598

RESUMEN

House dust mite (HDM) is a globally ubiquitous domestic cause of allergic diseases. There is a pressing demand to discover efficient, harmless, and eco-friendly natural extracts to inhibit HDM allergens that are more likely to trigger allergies and challenging to be prevented entirely. This study, therefore, is aimed at assessing the inhibition of the allergenicity of major HDM allergen Der f 2 by todomatsu oil extracted from residues of Abies Sachalinensis. The inhibition was investigated experimentally (using enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)) and in silico using molecular docking. The results showed that todomatsu oil inhibits the allergenicity of Der f 2 by reducing its amount instead of the IgG binding capacity of a single protein. Moreover, the compounds in todomatsu oil bind to Der f 2 via alkyl hydrophobic interactions. Notably, most compounds interact with the hydrophobic amino acids of Der f 2, and seven substances interact with CYS27. Contrarily, the principal compounds fail to attach to the amino acids forming the IgG epitope in Der f 2. Interestingly, chemical components with the lowest relative percentages in todomatsu oil show high-affinity values on Der f 2, especially ß-maaliene (-8.0 kcal/mol). In conclusion, todomatsu oil has been proven in vitro as a potential effective public health strategy to inhibit the allergenicity of Der f 2.


Asunto(s)
Abies , Alérgenos , Antígenos Dermatofagoides , Hipersensibilidad , Aceites de Plantas , Pyroglyphidae , Abies/química , Alérgenos/farmacología , Aminoácidos , Animales , Antígenos Dermatofagoides/metabolismo , Antígenos Dermatofagoides/farmacología , Proteínas de Artrópodos , Polvo/análisis , Bosques , Humanos , Inmunoglobulina G , Simulación del Acoplamiento Molecular , Aceites de Plantas/química , Aceites de Plantas/metabolismo , Aceites de Plantas/farmacología , Pyroglyphidae/química
2.
Heliyon ; 6(12): e05718, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33367129

RESUMEN

Aloe vera L. is widely cultivated in many countries due to its importance as an all-purpose herbal or medicinal plant. The growth and yield of this plant can be enhanced by application of fertilizer. It is expected that a higher and balanced nutrient supply will result in higher crop production maintaining soil health, which is possible when the applied fertilizers are done in way that is efficient. So, there is a need to understand the amount of applied and type of fertilizer that will give the best output for farmers and to formulate economical market products. This study was conducted to investigate the effect of N fertilizer on leaf yield, its uptake and requirement, critical concentration, use efficiency and economics of Aloe vera L. Plants were grown at six levels of N: 0, 40, 80, 100, 150 and 200 kg ha-1 from urea and diammonium phosphate (DAP) following completely randomized design with three replicates under field condition. The highest values of yield and yield attributes and profit based on benefit cost ratio (3.81 for urea and 2.91 for DAP) were obtained with 150 kg N ha-1 (urea) and 100 kg N ha-1 (DAP). Leaf biomass yield increased by 18-128 % in urea-N and 30-139 % in DAP-N fertilized plant over control while DAP > urea by 7.59 %. Sucker production (mean number) was urea-N (4.95 Plant-1) > DAP-N (2.28 Plant-1). Both gel and leaf N concentration and uptake was highest at 200 kg ha-1 for both sources. For 80 % leaf biomass yield, minimum requirement of N was ca 74.90 (urea) and 89.60 kg ha-1 (DAP). Growth and yield parameters to N application exhibited significant and positive correlations. Critical leaf N concentration was ca 0.88% (DAP) and 0.90% (urea) while mean and maximum NUE was 34% and 64 % (urea) and 43% and 69% (DAP), respectively. Farmers can be advised to apply N at the rate of 150 kg ha-1 from urea for producing economically higher yield and better-quality A. vera leaves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA