RESUMEN
AIMS/HYPOTHESIS: Diabetic nephropathy is the leading cause of end-stage renal disease. Previously we reported that C66, a novel analogue of curcumin with a very high bioavailability, ameliorated diabetic nephropathy in mice, with little known about the mechanism. The present study aimed to define the mechanism by which C66 ameliorates diabetic nephropathy. METHODS: Our aim was to discover whether C66 acts through the activation of nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or NRF2), which governs the antioxidant response. Streptozotocin-induced Nrf2 (also known as Nfe2l2)-knockout and wild-type (WT) diabetic mice were treated with C66. To determine whether the actions of C66 on NRF2 are mediated by microRNA (miR)-200a, WT diabetic mice were treated with C66 in the presence or absence of an in vivo miR-200a inhibitor (locked nucleic acid-modified anti-miR-200a [LNA-200a]) for 6 months. To determine whether miR-21 downregulation provided an NRF2-independent basis for C66 protection, Nrf2-knockout diabetic mice were treated with either C66 or an inhibitor of miR-21 (locked nucleic acid-modified anti-miR-21 [LNA-21]). RESULTS: Deletion of Nrf2 partially abolished diabetic nephropathy protection by C66, confirming the requirement of NRF2 for this protection. Diabetic mice, but not C66-treated diabetic mice, developed significant albuminuria, renal oxidative damage and fibrosis. C66 upregulated renal miR-200a, inhibited kelch-like ECH-associated protein 1 and induced NRF2 function, effects that were prevented by LNA-200a. However, LNA-200a only partially reduced the protection afforded by C66, suggesting the existence of miR-200a/NRF2-independent mechanisms for C66 protection. C66 was also found to inhibit diabetes induction of miR-21. Both C66 and LNA-21 produced similar reductions in miR-21, albuminuria and renal fibrosis. CONCLUSIONS/INTERPRETATION: The present study indicates that in addition to upregulating NRF2 by increasing miR-200a, C66 also protects against diabetic nephropathy by inhibiting miR-21.
Asunto(s)
Curcumina/uso terapéutico , Nefropatías Diabéticas/metabolismo , MicroARNs/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Presión Sanguínea/genética , Presión Sanguínea/fisiología , Western Blotting , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Heterocigoto , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Factor 2 Relacionado con NF-E2/genéticaRESUMEN
We have demonstrated that zinc supplementation provides cardiac protection from diabetes in mice, but its underlying mechanism remains unclear. Since zinc mimics the function of insulin, it may provide benefit to the heart via stimulating Akt-mediated glucose metabolism. Akt2 plays an important role in cardiac glucose metabolism and mice with Akt2 gene deletion (Akt2-KO) exhibit a type 2 diabetes phenotype; therefore, we assumed that no cardiac protection by zinc supplementation from diabetes would be observed in Akt2-KO mice. Surprisingly, despite Akt2 gene deletion, zinc supplementation provided protection against cardiac dysfunction and other pathological changes in Akt2-KO mice, which were accompanied by significant decreases in Akt and GSK-3ß phosphorylation. Correspondingly, glycogen synthase phosphorylation and hexokinase II and PGC-1α expression, all involved in the regulation of glucose metabolism, were significantly altered in diabetic hearts, along with a significantly increased expression of Akt negative regulators: PTEN, PTP1B, and TRB3. All these molecular, pathological, and functional changes were significantly prevented by 3-month zinc supplementation. Furthermore, the stimulation of Akt-mediated glucose metabolic kinases or enzymes by zinc treatment was metallothionein-dependent since it could not be observed in metallothionein-knockout mice. These results suggest that zinc preserves cardiac function and structure in Akt2-KO mice presumably due to its insulin mimetic effect on cardiac glucose-metabolism. The cardioprotective effects of zinc are metallothionein-dependent. This is very important since zinc supplementation may be required for patients with Akt2 gene deficiency or insulin resistance.
Asunto(s)
Cardiomiopatías/tratamiento farmacológico , Diabetes Mellitus Experimental/tratamiento farmacológico , Metalotioneína/genética , Miocardio/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Zinc/administración & dosificación , Animales , Glucemia/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Regulación de la Expresión Génica , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hexoquinasa/genética , Hexoquinasa/metabolismo , Insulina/metabolismo , Masculino , Metalotioneína/metabolismo , Ratones , Ratones Noqueados , Miocardio/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/deficiencia , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zinc/metabolismoRESUMEN
Human epidemiological and animal studies have shown the beneficial effect of zinc supplementation on mitigating diabetic nephropathy. However, the mechanism by which zinc protects the kidney from diabetes remains unknown. Here we demonstrate the therapeutic effects of zinc on diabetes-induced renal pathological and functional changes. These abnormalities were found in both transgenic OVE26 and Akt2-KO diabetic mouse models, accompanied by significant changes in glucose-metabolism-related regulators. The changes included significantly decreased phosphorylation of Akt and GSK-3ß, increased phosphorylation of renal glycogen synthase, decreased expression of hexokinase II and PGC-1α, and increased expression of the Akt negative regulators PTEN, PTP1B, and TRB3. All of these were significantly prevented by zinc treatment for 3 months. Furthermore, zinc-stimulated changes in glucose metabolism mediated by Akt were actually found to be metallothionein dependent, but not Akt2 dependent. These results suggest that the therapeutic effects of zinc in diabetic nephropathy are mediated, in part, by the preservation of glucose-metabolism-related pathways via the prevention of diabetes-induced upregulation of Akt negative regulators. Given that zinc deficiency is very common in diabetics, this finding implies that regularly monitoring zinc levels in diabetic patients, as well as supplementing if low, is important in mitigating the development of diabetic nephropathy.
Asunto(s)
Nefropatías Diabéticas/dietoterapia , Metalotioneína/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Zinc/administración & dosificación , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3/biosíntesis , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Metalotioneína/biosíntesis , Metalotioneína/genética , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética , Zinc/deficienciaRESUMEN
Alcoholic cardiomyopathy is characterized by impaired ventricular function although its toxic mechanism is unclear. This study examined the impact of cardiac overexpression of alcohol dehydrogenase (ADH), which oxidizes ethanol into acetaldehyde (ACA), on ethanol-induced cardiac contractile defect. Mechanical and intracellular Ca(2+) properties were evaluated in ventricular myocytes from ADH transgenic and wild-type (FVB) mice. ACA production was assessed by gas chromatography. ADH myocytes exhibited similar mechanical properties but a higher efficiency to convert ACA compared with FVB myocytes. Acute exposure to ethanol depressed cell shortening and intracellular Ca(2+) in the FVB group with maximal inhibitions of 23.3% and 23.4%, respectively. Strikingly, the ethanol-induced depression on cell shortening and intracellular Ca(2+) was significantly augmented in the ADH group, with maximal inhibitions of 43.7% and 40.6%, respectively. Pretreatment with the ADH inhibitor 4-methylpyrazole (4-MP) or the aldehyde dehydrogenase inhibitor cyanamide prevented or augmented the ethanol-induced inhibition, respectively, in the ADH but not the FVB group. The ADH transgene also substantiated the ethanol-induced inhibition of maximal velocity of shortening/relengthening and unmasked an ethanol-induced prolongation of the duration of shortening/relengthening, which was abolished by 4-MP. These data suggest that elevated cardiac ACA exposure due to enhanced ADH expression may play an important role in the development of alcoholic cardiomyopathy.