Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(15)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32726931

RESUMEN

Ventricular fibrillation (VF) signals are characterized by highly volatile and erratic electrical impulses, the analysis of which is difficult given the complex behavior of the heart rhythms in the left (LV) and right ventricles (RV), as sometimes shown in intracardiac recorded Electrograms (EGM). However, there are few studies that analyze VF in humans according to the simultaneous behavior of heart signals in the two ventricles. The objective of this work was to perform a spectral and a non-linear analysis of the recordings of 22 patients with Congestive Heart Failure (CHF) and clinical indication for a cardiac resynchronization device, simultaneously obtained in LV and RV during induced VF in patients with a Biventricular Implantable Cardioverter Defibrillator (BICD) Contak Renewal IVTM (Boston Sci.). The Fourier Transform was used to identify the spectral content of the first six seconds of signals recorded in the RV and LV simultaneously. In addition, measurements that were based on Information Theory were scrutinized, including Entropy and Mutual Information. The results showed that in most patients the spectral envelopes of the EGM sources of RV and LV were complex, different, and with several frequency peaks. In addition, the Dominant Frequency (DF) in the LV was higher than in the RV, while the Organization Index (OI) had the opposite trend. The entropy measurements were more regular in the RV than in the LV, thus supporting the spectral findings. We can conclude that basic stochastic processing techniques should be scrutinized with caution and from basic to elaborated techniques, but they can provide us with useful information on the biosignals from both ventricles during VF.


Asunto(s)
Fibrilación Ventricular , Arritmias Cardíacas , Desfibriladores Implantables , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Insuficiencia Cardíaca , Ventrículos Cardíacos , Humanos , Fibrilación Ventricular/diagnóstico
2.
Sensors (Basel) ; 18(5)2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29724033

RESUMEN

The intracardiac electrical activation maps are commonly used as a guide in the ablation of cardiac arrhythmias. The use of catheters with force sensors has been proposed in order to know if the electrode is in contact with the tissue during the registration of intracardiac electrograms (EGM). Although threshold criteria on force signals are often used to determine the catheter contact, this may be a limited criterion due to the complexity of the heart dynamics and cardiac vorticity. The present paper is devoted to determining the criteria and force signal profiles that guarantee the contact of the electrode with the tissue. In this study, we analyzed 1391 force signals and their associated EGM recorded during 2 and 8 s, respectively, in 17 patients (82 ± 60 points per patient). We aimed to establish a contact pattern by first visually examining and classifying the signals, according to their likely-contact joint profile and following the suggestions from experts in the doubtful cases. First, we used Principal Component Analysis to scrutinize the force signal dynamics by analyzing the main eigen-directions, first globally and then grouped according to the certainty of their tissue-catheter contact. Second, we used two different linear classifiers (Fisher discriminant and support vector machines) to identify the most relevant components of the previous signal models. We obtained three main types of eigenvectors, namely, pulsatile relevant, non-pulsatile relevant, and irrelevant components. The classifiers reached a moderate to sufficient discrimination capacity (areas under the curve between 0.84 and 0.95 depending on the contact certainty and on the classifier), which allowed us to analyze the relevant properties in the force signals. We conclude that the catheter-tissue contact profiles in force recordings are complex and do not depend only on the signal intensity being above a threshold at a single time instant, but also on time pulsatility and trends. These findings pave the way towards a subsystem which can be included in current intracardiac navigation systems assisted by force contact sensors, and it can provide the clinician with an estimate of the reliability on the tissue-catheter contact in the point-by-point EGM acquisition procedure.


Asunto(s)
Arritmias Cardíacas/terapia , Ablación por Catéter/métodos , Técnicas Electrofisiológicas Cardíacas/normas , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA