Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
3 Biotech ; 13(9): 296, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37564274

RESUMEN

The effect and contribution of an external magnetic field (MF) on the uptake and translocation of nanoparticles (NPs) in plants have been investigated in this study. Barley was treated with iron oxide NPs (Fe3O4, 500 mg/L, 50-100 nm) and grown under various MF strengths (20, 42, 125, and 250 mT). The root-to-shoot translocation of NPs was assessed using a vibrating sample magnetometer (VSM) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additionally, plant phenological parameters, such as germination, protein and chlorophyll content, and photosynthetic and nutritional status, were examined. The results demonstrated that the external MF significantly enhances the uptake of NPs through the roots. The uptake was higher at lower MF strengths (20 and 42 mT) than at higher MF strengths (125 and 250 mT). The root and shoot iron (Fe) contents were approximately 2.5-3-fold higher in the 250 mT application compared to the control. Furthermore, the MF treatments significantly increased micro-elements such as Mn, Zn, Cu, Mo, and B (P < 0.005). This effect could be attributed to the disruption of cell membranes at the root tip cells caused by both the MF and NPs. Moreover, the MF treatments improved germination rates by 28%, total protein content, and photosynthetic parameters. These findings show that magnetic field application helps the effective transport of magnetic NPs, which could be essential for NPs-mediated drug delivery, plant nutrition, and genetic transformation applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03727-4.

2.
Plant Physiol Biochem ; 139: 56-65, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30878838

RESUMEN

This study investigates the effect of SPIONs (superparamagnetic iron oxide nanoparticles, ∼12.5 nm in size) on summer squash plant (Cucurbita pepo) in the presence and absence of supplementary iron (Fe(II)-EDTA). The plants were grown in nutrient solution with different iron sources: (i) Fe(II)-EDTA, (ii) without Fe(II)-EDTA (iii) SPIONs only, and (iv) Fe(II)-EDTA with SPIONs. Plant growth and development were assessed after 20 days of soaking by measuring phenological parameters such as plant biomass, chlorophyll content, amount of carotenoids, and the catalase enzyme activity. Transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, X-ray diffraction, and vibrating sample magnetometer methods were used to detect uptake and translocation of SPIONs in plant tissues. Our results showed that SPIONs treatment (without Fe(II)-EDTA) caused growth retardation and decreased the plant biomass and chlorophyll content. Hence, they are not efficient sources to compensate for iron demand of squash plant. Electron microscopy observations, magnetization and elemental analyses revealed that SPIONs are taken-up by plant roots but not translocate to upper organs. In roots, SPIONs use a symplastic route for intercellular transfer. These findings suggest that as an iron source, SPIONs alone are not efficient for plant growth, but can contribute it together with Fe(II)-EDTA.


Asunto(s)
Cucurbita/efectos de los fármacos , Ácido Edético/farmacología , Compuestos Ferrosos/farmacología , Nanopartículas de Magnetita , Carotenoides/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Cucurbita/crecimiento & desarrollo , Cucurbita/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA