Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Neuroscience ; 544: 128-137, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38447690

RESUMEN

In Robo3cKO mice, midline crossing defects of the trigeminothalamic projections from the trigeminal principal sensory nucleus result in bilateral whisker maps in the somatosensory thalamus and consequently in the face representation area of the primary somatosensory (S1) cortex (Renier et al., 2017; Tsytsarev et al., 2017). We investigated whether this bilateral sensory representation in the whisker-barrel cortex is also reflected in the downstream projections from the S1 to the primary motor (M1) cortex. To label these projections, we injected anterograde viral axonal tracer in S1 cortex. Corticocortical projections from the S1 distribute to similar areas across the ipsilateral hemisphere in control and Robo3cKO mice. Namely, in both genotypes they extend to the M1, premotor/prefrontal cortex (PMPF), secondary somatosensory (S2) cortex. Next, we performed voltage-sensitive dye imaging (VSDi) in the left hemisphere following ipsilateral and contralateral single whisker stimulation. While controls showed only activation in the contralateral whisker barrel cortex and M1 cortex, the Robo3cKO mouse left hemisphere was activated bilaterally in both the barrel cortex and the M1 cortex. We conclude that the midline crossing defect of the trigeminothalamic projections leads to bilateral whisker representations not only in the thalamus and the S1 cortex but also downstream from the S1, in the M1 cortex.


Asunto(s)
Corteza Motora , Corteza Somatosensorial , Ratones , Animales , Corteza Somatosensorial/fisiología , Vibrisas/fisiología , Corteza Motora/fisiología , Tálamo/diagnóstico por imagen , Núcleos del Trigémino
2.
Neuroscience ; 494: 140-151, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35598701

RESUMEN

In Robo3R3-5cKO mouse brain, rhombomere 3-derived trigeminal principal nucleus (PrV) neurons project bilaterally to the somatosensory thalamus. As a consequence, whisker-specific neural modules (barreloids and barrels) representing whiskers on both sides of the face develop in the sensory thalamus and the primary somatosensory cortex. We examined the morphological complexity of layer 4 barrel cells, their postsynaptic partners in layer 3, and functional specificity of layer 3 pyramidal cells. Layer 4 spiny stellate cells form much smaller barrels and their dendritic fields are more focalized and less complex compared to controls, while layer 3 pyramidal cells did not show notable differences. Using in vivo 2-photon imaging of a genetically encoded fluorescent [Ca2+] sensor, we visualized neural activity in the normal and Robo3R3-5cKO barrel cortex in response to ipsi- and contralateral single whisker stimulation. Layer 3 neurons in control animals responded only to their contralateral whiskers, while in the mutant cortex layer 3 pyramidal neurons showed both ipsi- and contralateral whisker responses. These results indicate that bilateral whisker map inputs stimulate different but neighboring groups of layer 3 neurons which normally relay contralateral whisker-specific information to other cortical areas.


Asunto(s)
Corteza Somatosensorial , Vibrisas , Animales , Ratones , Neuronas/fisiología , Células Piramidales/fisiología , Corteza Somatosensorial/fisiología , Tálamo , Vibrisas/fisiología
3.
Mol Imaging ; 18: 1536012118821034, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30799683

RESUMEN

MET, the gene encoding the tyrosine kinase receptor for hepatocyte growth factor, is a susceptibility gene for autism spectrum disorder (ASD). Genetically altered mice with a kinase-inactive Met offer a potential model for understanding neural circuit organization changes in autism. Here, we focus on the somatosensory thalamocortical circuitry because distinct somatosensory sensitivity phenotypes accompany ASD, and this system plays a major role in sensorimotor and social behaviors in mice. We employed resting-state functional magnetic resonance imaging and in vivo high-resolution proton MR spectroscopy to examine neuronal connectivity and neurotransmission of wild-type, heterozygous Met-Emx1, and fully inactive homozygous Met-Emx1 mice. Met-Emx1 brains showed impaired maturation of large-scale somatosensory network connectivity when compared with wild-type controls. Significant sex × genotype interaction in both network features and glutamate/gamma-aminobutyric acid (GABA) balance was observed. Female Met-Emx1 brains showed significant connectivity and glutamate/GABA balance changes in the somatosensory thalamocortical system when compared with wild-type brains. The glutamate/GABA ratio in the thalamus was correlated with the connectivity between the somatosensory cortex and the thalamus in heterozygous Met-Emx1 female brains. The findings support the hypothesis that aberrant functioning of the somatosensory thalamocortical system is at the core of the conspicuous somatosensory behavioral phenotypes observed in Met-Emx1 mice.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Proteínas Proto-Oncogénicas c-met/genética , Corteza Somatosensorial/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Mapeo Encefálico , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Somatosensorial/metabolismo , Tálamo/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
J Neurophysiol ; 115(3): 1298-306, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26683074

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental disorder that results from mutations in the X-linked gene for methyl-CpG-binding protein 2 (MECP2). The underlying cellular mechanism for the sensory deficits in patients with RTT is largely unknown. This study used the Bird mouse model of RTT to investigate sensory thalamocortical synaptic transmission in the barrel cortex of Mecp2-null mice. Electrophysiological results showed an excitation/inhibition imbalance, biased toward inhibition, due to an increase in efficacy of postsynaptic GABAA receptors rather than alterations in inhibitory network and presynaptic release properties. Enhanced inhibition impaired the transmission of tonic sensory signals from the thalamus to the somatosensory cortex. Previous morphological studies showed an upregulation of NMDA receptors in the neocortex of both RTT patients and Mecp2-null mice at early ages [Blue ME, Naidu S, Johnston MV. Ann Neurol 45: 541-545, 1999; Blue ME, Kaufmann WE, Bressler J, Eyring C, O'Driscoll C, Naidu S, Johnston MV. Anat Rec (Hoboken) 294: 1624-1634, 2011]. Although AMPA and NMDA receptor-mediated excitatory synaptic transmission was not altered in the barrel cortex of Mecp2-null mice, extrasynaptic NMDA receptor-mediated responses increased markedly. These responses were blocked by memantine, suggesting that extrasynaptic NMDA receptors play an important role in the pathogenesis of RTT. The results suggest that enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses may underlie impaired somatosensation and that pharmacological blockade of extrasynaptic NMDA receptors may have therapeutic value for RTT.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/deficiencia , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Rett/metabolismo , Corteza Somatosensorial/metabolismo , Animales , Femenino , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Receptores de GABA-A/metabolismo , Síndrome de Rett/genética , Corteza Somatosensorial/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Potenciales Sinápticos , Tálamo/metabolismo , Tálamo/fisiología
5.
Sci Rep ; 5: 17325, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26612326

RESUMEN

The whisker system of rodents is an excellent model to study peripherally evoked neural activity in the brain. Discrete neural modules represent each whisker in the somatosensory cortex ("barrels"), thalamus ("barreloids"), and brain stem ("barrelettes"). Stimulation of a single whisker evokes neural activity sequentially in its corresponding barrelette, barreloid, and barrel. Conventional optical imaging of functional activation in the brain is limited to surface structures such as the cerebral cortex. To access subcortical structures and image sensory-evoked neural activity, we designed a needle-based optical system using gradient-index (GRIN) rod lens. We performed voltage-sensitive dye imaging (VSDi) with GRIN rod lens to visualize neural activity evoked in the thalamic barreloids by deflection of whiskers in vivo. We stimulated several whiskers together to determine the sensitivity of our approach in differentiating between different barreloid responses. We also carried out stimulation of different whiskers at different times. Finally, we used muscimol in the barrel cortex to silence the corticothalamic inputs while imaging in the thalamus. Our results show that it is possible to obtain functional maps of the sensory periphery in deep brain structures such as the thalamic barreloids. Our approach can be broadly applicable to functional imaging of other core brain structures.


Asunto(s)
Tronco Encefálico/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Vibrisas/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Colorantes , Estimulación Eléctrica , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Femenino , Agonistas de Receptores de GABA-A/farmacología , Inyecciones Intraventriculares , Masculino , Ratones , Muscimol/farmacología , Corteza Somatosensorial/efectos de los fármacos , Técnicas Estereotáxicas
6.
J Neurosci ; 34(36): 12001-14, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186746

RESUMEN

NMDARs play a major role in patterning of topographic sensory maps in the brain. Genetic knock-out of the essential subunit of NMDARs in excitatory cortical neurons prevents whisker-specific neural pattern formation in the barrel cortex. To determine the role of NMDARs en route to the cortex, we generated sensory thalamus-specific NR1 (Grin1)-null mice (ThNR1KO). A multipronged approach, using histology, electrophysiology, optical imaging, and behavioral testing revealed that, in these mice, whisker patterns develop in the trigeminal brainstem but do not develop in the somatosensory thalamus. Subsequently, there is no barrel formation in the neocortex yet a partial afferent patterning develops. Whisker stimulation evokes weak cortical activity and presynaptic neurotransmitter release probability is also affected. We found several behavioral deficits in tasks, ranging from sensorimotor to social and cognitive. Collectively, these results show that thalamic NMDARs play a critical role in the patterning of the somatosensory thalamic and cortical maps and their impairment may lead to pronounced behavioral defects.


Asunto(s)
Conectoma , Aprendizaje por Laberinto , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Somatosensorial/fisiología , Tálamo/metabolismo , Percepción del Tacto , Animales , Potenciales Evocados , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética , Conducta Social , Corteza Somatosensorial/metabolismo , Tálamo/fisiología , Núcleos del Trigémino/metabolismo , Núcleos del Trigémino/fisiología , Vibrisas/inervación , Vibrisas/fisiología
7.
J Comp Neurol ; 521(2): 312-25, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22806432

RESUMEN

Ascending somatosensory pathways are crossed pathways representing each side of the body in the contralateral neocortex. The principal sensory nucleus of the trigeminal nerve (PrV) relays the facial sensations to the contralateral somatosensory cortex via the ventrobasal thalamus. In the companion article (Kivrak and Erzurumlu [2012] J. Comp. Neurol. 12-0013) we described the normal development of the trigeminal lemniscal pathway in the mouse. In this study we investigated the role of midline axon navigation signals, the netrin and slit proteins. In situ hybridization assays revealed that both netrin and slit mRNAs are expressed along the midline facing the PrV axons and their receptors are expressed in developing PrV neurons. In wild-type mouse embryos, PrV axons cross the midline and take a sharp rostral turn heading toward the contralateral thalamus. Examination of trigeminal lemniscal axons in dcc knockout mice revealed absence of midline crossing between E11 and E15. However, a few axons crossed the midline at E17 and reached the contralateral thalamus, resulting in a bilateral PrV lemniscal pathway at P0. We also found that slit1, -2 or -3 single or double knockout mice have impaired development of the trigeminal-lemniscal pathway. These include axon stalling along the midline, running within the midline, and recrossing of axons back to the site of origin. Collectively, our studies indicate a cooperative role for netrin and slit proteins in midline attraction and crossing behavior of the ascending facial somatosensory projections during development.


Asunto(s)
Factores de Crecimiento Nervioso/fisiología , Proteínas del Tejido Nervioso/fisiología , Vías Nerviosas/fisiología , Transducción de Señal/fisiología , Tálamo/fisiología , Núcleos del Trigémino/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Axones/fisiología , Carbocianinas , Receptor DCC , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Netrina-1 , Vías Nerviosas/crecimiento & desarrollo , Embarazo , Sondas ARN , Receptores de Superficie Celular/biosíntesis , Receptores de Superficie Celular/genética , Receptores Inmunológicos/fisiología , Rombencéfalo/metabolismo , Rombencéfalo/fisiología , Núcleos del Trigémino/crecimiento & desarrollo , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/genética , Proteínas Roundabout
8.
J Comp Neurol ; 521(2): 299-311, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22791623

RESUMEN

The principal sensory (PrV) nucleus-based trigeminal lemniscus conveys whisker-specific neural patterns to the ventroposteromedial (VPM) nucleus of the thalamus and subsequently to the primary somatosensory cortex. Here we examined the perinatal development of this pathway with carbocyanine dye labeling in embryonic and early postnatal mouse brains. We developed a novel preparation in which the embryonic hindbrain and the diencephalon are flattened out, allowing a birds-eye view of the PrV lemniscus in its entirety. For postnatal brains we used another novel approach by sectioning the brain along an empirically determined oblique horizontal angle, again preserving the trigeminothalamic pathway. PrV neurons are born along the hindbrain ventricular zone and migrate radially for a short distance to coalesce into a nucleus adjacent to the ascending trigeminal tract. During migration of the spindle-shaped cell bodies, slender axonal processes grow along the opposite direction towards the floor plate. As early as embryonic day (E) 11, pioneering axons tipped with large growth cones cross the ventral midline and immediately make a right angle turn. By E13 many PrV axons form fascicles crossing the midline and follow a rostral course. PrV axons reach the midbrain by E15 and the thalamus by E17. While the target recognition and invasion occurs prenatally, organization of PrV axon terminals into whisker-specific rows and patches takes place during the first 4 postnatal (P) days. Initially diffuse and exuberant projections in the VPM at P1 coalesce into row and whisker specific terminal zones by P4.


Asunto(s)
Núcleos del Trigémino/embriología , Núcleos del Trigémino/crecimiento & desarrollo , Animales , Carbocianinas , Diferenciación Celular , Movimiento Celular , Femenino , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Vías Nerviosas/embriología , Embarazo , Terminales Presinápticos/fisiología , Tálamo/anatomía & histología , Tálamo/crecimiento & desarrollo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
9.
J Neurosci ; 32(18): 6183-96, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22553025

RESUMEN

To assess the impact of synaptic neurotransmitter release on neural circuit development, we analyzed barrel cortex formation after thalamic or cortical ablation of RIM1 and RIM2 proteins, which control synaptic vesicle fusion. Thalamus-specific deletion of RIMs reduced neurotransmission efficacy by 67%. A barrelless phenotype was found with a dissociation of effects on the presynaptic and postsynaptic cellular elements of the barrel. Presynaptically, thalamocortical axons formed a normal whisker map, whereas postsynaptically the cytoarchitecture of layer IV neurons was altered as spiny stellate neurons were evenly distributed and their dendritic trees were symmetric. Strikingly, cortex-specific deletion of the RIM genes did not modify barrel development. Adult mice with thalamic-specific RIM deletion showed a lack of activity-triggered immediate early gene expression and altered sensory-related behaviors. Thus, efficient synaptic release is required at thalamocortical but not at corticocortical synapses for building the whisker to barrel map and for efficient sensory function.


Asunto(s)
Corteza Cerebral/fisiología , Neurotransmisores/metabolismo , Corteza Somatosensorial/fisiología , Transmisión Sináptica/fisiología , Tálamo/fisiología , Tacto/fisiología , Vibrisas/fisiología , Animales , Axones/fisiología , Femenino , Masculino , Ratones , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Vibrisas/inervación
10.
Mol Cell Neurosci ; 44(4): 394-403, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20621716

RESUMEN

Little is known of transcriptional mechanisms underlying the development of the trigeminal (V) principal sensory nucleus (PrV), the brainstem nucleus responsible for the development of the whisker-to-barrel cortex pathway. Lmx1b, a LIM homeodomain transcription factor, is expressed in embryonic PrV. In Lmx1b knockout ((-)(/)(-)) mice, V primary afferent projections to PrV are normal, albeit reduced in number, whereas the PrV-thalamic lemniscal pathway is sparse and develops late. Excess cell death occurs in the embryonic Lmx1b(-)(/)(-) PrV, but not in Lmx1b/Bax double null mutants. Expression of Drg11, a downstream transcription factor essential for PrV development and pattern formation, is abolished in PrV, but not in the V ganglion. Consequently, whisker patterns fail to develop in PrV by birth. Rescued PrV cells in Lmx1b/Bax double (-)(/)(-)s failed to rescue whisker-related PrV pattern formation. Thus, Lmx1b and Drg11 may act in the same genetic signaling pathway that is essential for PrV pattern formation.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Homeodominio/fisiología , Factores de Transcripción/fisiología , Núcleos del Trigémino/embriología , Vibrisas/inervación , Vías Aferentes/fisiología , Animales , Animales Recién Nacidos , Muerte Celular/genética , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Tálamo/citología , Tálamo/embriología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Ganglio del Trigémino/citología , Ganglio del Trigémino/embriología , Núcleos del Trigémino/citología , Núcleos del Trigémino/metabolismo , Proteína X Asociada a bcl-2/deficiencia
11.
J Neurosci ; 28(23): 5931-43, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18524897

RESUMEN

Experimental evidence from mutant or genetically altered mice indicates that the formation of barrels and the proper maturation of thalamocortical (TC) synapses in the primary somatosensory (barrel) cortex depend on mechanisms mediated by neural activity. Type 1 adenylyl cyclase (AC1), which catalyzes the formation of cAMP, is stimulated by increases in intracellular Ca(2+) levels in an activity-dependent manner. The AC1 mutant mouse, barrelless (brl), lacks typical barrel cytoarchitecture, and displays presynaptic and postsynaptic functional defects at TC synapses. However, because AC1 is expressed throughout the trigeminal pathway, the barrel cortex phenotype of brl mice may be a consequence of AC1 disruption in cortical or subcortical regions. To examine the role of cortical AC1 in the development of morphological barrels and TC synapses, we generated cortex-specific AC1 knock-out (CxAC1KO) mice. We found that neurons in layer IV form grossly normal barrels and TC axons fill barrel hollows in CxAC1KO mice. In addition, whisker lesion-induced critical period plasticity was not impaired in these mice. However, we found quantitative reductions in the quality of cortical barrel cytoarchitecture and dendritic asymmetry of layer IV barrel neurons in CxAC1KO mice. Electrophysiologically, CxAC1KO mice have deficits in the postsynaptic but not in the presynaptic maturation of TC synapses. These results suggest that activity-dependent postsynaptic AC1-cAMP signaling is required for functional maturation of TC synapses and the development of normal barrel cortex cytoarchitecture. They also suggest that the formation of the gross morphological features of barrels is independent of postsynaptic AC1 in the barrel cortex.


Asunto(s)
Adenilil Ciclasas/biosíntesis , Corteza Cerebral/enzimología , Corteza Cerebral/crecimiento & desarrollo , Sinapsis/fisiología , Tálamo/enzimología , Tálamo/crecimiento & desarrollo , Adenilil Ciclasas/genética , Animales , Corteza Cerebral/ultraestructura , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Mutantes , Vías Nerviosas/enzimología , Vías Nerviosas/ultraestructura , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Sinapsis/genética , Sinapsis/ultraestructura , Tálamo/ultraestructura
12.
J Comp Neurol ; 485(4): 280-92, 2005 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-15803506

RESUMEN

Development of whisker-specific neural patterns in the rodent somatosensory system requires NMDA receptor (NMDAR)-mediated activity. In cortex-specific NR1 knockout (CxNR1KO) mice, while thalamocortical afferents (TCAs) develop rudimentary whisker-specific patterns in the primary somatosensory (barrel) cortex, layer IV cells do not develop barrels or orient their dendrites towards TCAs. To determine the role of postsynaptic NMDARs in presynaptic afferent development and patterning in the barrel cortex, we examined the single TCA arbors in CxNR1KO mice between postnatal days (P) 1-7. Sparsely branched TCAs invade the cortical plate on P1 in CxNR1KO mice as in control mice. In control animals, TCAs progressively elaborate patchy terminals, mostly restricted to layer IV. In CxNR1KO mice, TCAs develop far more extensive arbors between P3-7. Their lateral extent is twice that of controls from P3 onwards. By P7, CxNR1KO TCAs have significantly fewer branch points and terminal endings in layers IV and VI but more in layers II/III and V than control mouse TCAs. Within expansive terminal arbors, CxNR1KO TCAs develop focal terminal densities in layer IV, corresponding to the rudimentary whisker-specific patches. Given that thalamic NMDARs are spared in CxNR1KO mice, the present results show that postsynaptic NMDARs play an important role in refinement of presynaptic afferent arbors and whisker-specific patterning in the developing barrel cortex.


Asunto(s)
Axones/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Receptores de N-Metil-D-Aspartato/deficiencia , Tálamo/crecimiento & desarrollo , Tálamo/metabolismo , Vías Aferentes/crecimiento & desarrollo , Vías Aferentes/metabolismo , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Ratones , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/genética , Tálamo/citología
13.
J Comp Neurol ; 485(1): 57-63, 2005 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-15776442

RESUMEN

The body map in the parietal neocortex is built by inputs from the brainstem and thalamic somatosensory nuclei. Receptor density in the sensory periphery and neural activity play a major role in allocation of cortical tissue to different components of the somatosensory body map. Here we present evidence that neural activity mediated via N-methyl-D-aspartate (NMDA) receptors plays a major role in parcellation of the cortical body map subdivisions. In mice with genetically lowered NMDA receptor function along the trigeminal pathway, subcortical trigeminal nuclei shrink and, consequently, the face representation area of the primary somatosensory cortex diminishes in size. In contrast, dorsal column subcortical paw representation areas that are not as severely affected by the genetic manipulation of NMDA receptors do not show any areal changes, yet their cortical projection zones expand. Our findings indicate that both subcortical and cortical mechanisms contribute to cortical parcellation of body map subdivisions in an NMDA receptor-dependent manner.


Asunto(s)
Mapeo Encefálico , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/deficiencia , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Vías Aferentes/anatomía & histología , Vías Aferentes/fisiología , Animales , Animales Recién Nacidos , Extremidades/inervación , Extremidades/fisiología , Ratones , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Tálamo/anatomía & histología , Vibrisas/inervación , Vibrisas/fisiología
14.
Mol Cell Neurosci ; 21(3): 477-92, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12498788

RESUMEN

N-Methyl-D-aspartate receptors (NMDARs) are important for synaptic refinement during development. In CxNR1KO mice, cortical excitatory neurons lack NR1, the essential subunit of the NMDAR, and in their primary somatosensory (S1) cortex whisker-specific cellular patterns, "barrels," are absent. Despite this cytoarchitectural defect, thalamocortical axons (TCAs) representing the mystacial vibrissae form topographically organized patterns and undergo critical period plasticity. This region-specific knockout mouse model allows for dissection of the mechanisms underlying patterning of the pre- and postsynaptic neural elements in the S1 cortex. In the absence of functional NMDARs, layer IV cell numbers are unaltered, but these cells fail to segregate into barrels. Furthermore, the dendritic fields of spiny stellate cells do not orient toward TCA terminal patches as in normal mice. Instead, they radiate in all directions covering larger territories, exhibiting profuse branching with increased spine density. Comparison of TCA patches with serotonin transporter (5-HTT) immunohistochemistry or Dil labeling also indicates that in the CxNR1KO cortex TCAs form smaller patches and individual axon terminal branching is not as well developed as in control cortex. Our results suggest that postsynaptic NMDAR activation is critical in communicating periphery-related sensory patterns from TCAs to barrel cells. When postsynaptic NMDAR function is disrupted, layer IV spiny stellate cells remain imperceptive to patterning of their presynaptic inputs and elaborate exuberant dendritic specializations.


Asunto(s)
Vías Aferentes/crecimiento & desarrollo , Diferenciación Celular/genética , Interneuronas/metabolismo , Proteínas de Transporte de Membrana , Proteínas del Tejido Nervioso , Terminales Presinápticos/metabolismo , Receptores de N-Metil-D-Aspartato/deficiencia , Corteza Somatosensorial/crecimiento & desarrollo , Transmisión Sináptica/genética , Vías Aferentes/citología , Vías Aferentes/metabolismo , Animales , Animales Recién Nacidos , Tipificación del Cuerpo/genética , Proteínas Portadoras/metabolismo , Polaridad Celular/genética , Dendritas/metabolismo , Dendritas/ultraestructura , Femenino , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/genética , Interneuronas/citología , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Terminales Presinápticos/ultraestructura , Receptores de N-Metil-D-Aspartato/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Transducción de Señal/genética , Corteza Somatosensorial/citología , Corteza Somatosensorial/metabolismo , Tálamo/citología , Tálamo/crecimiento & desarrollo , Tálamo/metabolismo
15.
J Neurosci ; 22(21): 9171-5, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12417641

RESUMEN

Neural activity plays an important role in refinement and plasticity of synaptic connections in developing vertebrate sensory systems. The rodent whisker-barrel pathway is an excellent model system to investigate the role of activity in formation of patterned neural connections and their plasticity. When whiskers on the snout or the sensory nerves innervating them are damaged during a critical period in development, whisker-specific patterns are altered along the trigeminal pathway, including the primary somatosensory (S1) cortex. In this context, NMDA receptor (NMDAR)-mediated activity has been implicated in patterning and plasticity of somatosensory maps. Using CxNR1KO mice, in which NMDAR1 (NR1), the essential NMDAR subunit gene, is disrupted only in excitatory cortical neurons, we showed that NMDAR-mediated activity is essential for whisker-specific patterning of barrel cells in layer IV of the S1 cortex. In CxNR1KO mice, thalamocortical axons (TCAs) representing the large whiskers segregate into rudimentary patches, but barrels as cellular modules do not develop. In this study, we examined lesion-induced TCA plasticity in CxNR1KO mice. TCA patterns underwent normal structural plasticity when their peripheral inputs were altered after whisker lesions during the critical period. The extent of the lesion-induced morphological plasticity and the duration of the critical period were quantitatively indistinguishable between CxNR1KO and control mice. We conclude that TCA plasticity in the neocortex is independent of postsynaptic NMDAR activity in excitatory cortical neurons, and that non-NMDAR-mediated cortical activity and/or subcortical mechanisms must be operational in this process.


Asunto(s)
Axones/fisiología , Proteínas de Transporte de Membrana , Proteínas del Tejido Nervioso , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Somatosensorial/fisiología , Animales , Animales Recién Nacidos , Proteínas Portadoras/metabolismo , Ácido Glutámico/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Mutantes , Ratones Transgénicos , Neuronas/citología , Receptores de N-Metil-D-Aspartato/deficiencia , Receptores de N-Metil-D-Aspartato/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Transmisión Sináptica/fisiología , Tálamo/fisiología , Vibrisas/inervación , Vibrisas/fisiología , Vías Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA