Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(10): 15065-15077, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38286926

RESUMEN

The use of additives, especially colorants, in food and pharmaceutical industry is increasing dramatically. Currently, additives are classified as contaminants of emerging concern (CECs). Concerns have been raised about the potential hazards of food additives to reproductive organs and fertility. The present study investigates the reproductive toxicity of tartrazine (TRZ), a synthetic colorant, in male rats and aims to explore the curative effect of Ginkgo biloba extract (EGb) against TRZ-induced testicular toxicity. Twenty-four rats were divided into four groups: the control (0.5 ml distilled water), the EGb group (100 mg/kg EGb alone), the TRZ group (7.5 mg/kg TRZ alone), and the TRZ-EGb group (7.5 mg/kg TRZ plus 100 mg/kg EGb). The doses were administered orally in distilled water once daily for 28 days. Toxicity studies of TRZ investigated testicular redox state, serum gonadotropins, and testosterone levels, testicular 17 ß-hydroxysteroid dehydrogenase activity, sperm count and quality, levels of inflammatory cytokines, and caspase-3 expression as an apoptotic marker. Also, histopathological alterations of the testes were examined. TRZ significantly affected the testicular redox status as indicated by the increase in malondialdehyde and the decrease in reduced glutathione, superoxide dismutase, and catalase. It also disrupted serum gonadotropins (follicle stimulating hormone and luteinizing hormone) and testosterone levels and the activity of testicular 17ß-hydroxysteroid dehydrogenase. Additionally, TRZ adversely affected sperm count, motility, viability, and abnormality. Levels of tumor necrosis factor-α, interleukin-1ß, interleukin-6, and expression of caspase-3 were increased in the testes. Histopathological examination of the testes supported the alterations mentioned above. Administration of EGb significantly ameliorated TRZ-induced testicular toxicity in rats. In conclusion, EGb protected against TRZ-induced testicular toxicity through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.


Asunto(s)
Antioxidantes , Extracto de Ginkgo , Testículo , Ratas , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Caspasa 3/metabolismo , Tartrazina/toxicidad , Estrés Oxidativo , Ginkgo biloba , Extractos Vegetales/metabolismo , Hormona Luteinizante , Antiinflamatorios/farmacología , Testosterona , Hidroxiesteroide Deshidrogenasas/metabolismo , Hidroxiesteroide Deshidrogenasas/farmacología , Agua/metabolismo , Semillas
2.
Behav Brain Res ; 458: 114731, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-37898350

RESUMEN

Insufficient sleep is associated with impaired hypothalamic activity and declined attentional performance. In this study, alterations in the hypothalamus of REM sleep-deprived (SD) young and aged rats, and the modulatory effect of near-infrared (NIR) laser were investigated. Forty-eight male Wistar rats (24 young at 2 months and 24 senile at 14 months) were divided into three groups: the control, the SD group subjected to 72 hr of sleep deprivation, and the transcranial-NIR laser-treated (TLT) group subjected to SD for 72 hr and irradiated with 830 nm laser. The hypothalamic levels of oxidative stress, inflammatory biomarkers, antioxidant enzymes, mitochondrial cytochrome C oxidase (CCO), apoptotic markers (BAX, BCL-2), and neuronal survival-associated genes (BDNF, GLP-1) were evaluated. Furthermore, the hypothalamic tissue alterations were analyzed via histological examination. The results revealed that TLT treatment has enhanced the antioxidant status, prevented oxidative insults, suppressed neuroinflammation, regulated CCO activity, reduced apoptotic markers, and tuned the survival genes (BDNF & GLP-1) in hypothalamic tissue of SD young and aged rats. Microscopically, TLT treatment has ameliorated the SD-induced alterations and restored the normal histological features of hypothalamus tissue. Moreover, the obtained data showed that SD and NIR laser therapy are age-dependent. Altogether, our findings emphasize the age-dependent adverse effects of SD on the hypothalamus and suggest the use of low-laser NIR radiation as a potential non-invasive and therapeutic approach against SD-induced adverse effects in young and aged animals.


Asunto(s)
Antioxidantes , Factor Neurotrófico Derivado del Encéfalo , Ratas , Masculino , Animales , Antioxidantes/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas Wistar , Hipotálamo/metabolismo , Privación de Sueño/complicaciones , Péptido 1 Similar al Glucagón
3.
Phytother Res ; 37(6): 2693-2737, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37195042

RESUMEN

Neurodegenerative disorders are heterogeneous, debilitating, and incurable groups of brain disorders that have common features including progressive degeneration of the structure and function of the nervous system. Phytoestogenic-isoflavones have been identified as active compounds that can modulate different molecular signaling pathways related to the nervous system. The main aim is to shed the light on the molecular mechanisms followed by phytoestrogen-isoflavones profound in the Trifolium pratense and discuss the latest pharmacological findings in the treatment of neurodegenerative disorders. Data were collected using different databases. The search terms used included "Phytoestrogens," "Isoflavones," "neurodegenerative disorders," "Neuronal plasticity," etc., and combinations of these keywords. As a result, this review article mainly demonstrates the potential neuroprotective properties of phystoestrogen-isoflavones present in the Trifolium pratense (Red clover), particularly in neurodegenerative disorders. Phytochemical studies have shown that Trifolium pratense mainly includes more than 30 isoflavone compounds. Among them, phytoestrogen-isoflavones, such as biochanin A, daidzein, formononetin, genistein (Gen), etc.,are characterized by potent neuroprotective properties against different neurodegenerative disorders. There are preclinical and clinical scientific evidence on their mechanisms of action involve molecular interaction with estrogenic receptors, anti-inflammatory, anti-oxidative, antiapoptotic, autophagic inducing, and so on. phytoestrogen-isoflavones are the major bioactive components in the Trifolium pratense that exhibit therapeutic efficacy in the case of neurodegenerative disorders. This review provides detailed molecular mechanisms targeted by phytoestrogen-isoflavones and experimental key findings for the clinical use of prescriptions containing Trifolium pratense-derived isoflavones for the treatment of neurodegenerative disorders.


Asunto(s)
Isoflavonas , Fármacos Neuroprotectores , Trifolium , Fitoestrógenos/farmacología , Fitoestrógenos/uso terapéutico , Trifolium/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
4.
Phytochemistry ; 202: 113293, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35780924

RESUMEN

Neurodegenerative and neuropsychiatric illnesses are prevalent and life-threatening disorders characterized by a wide range of clinical syndromes and comorbidities, all of which have complex origins and share common molecular pathomechanisms. Although the pathophysiology of neurological illnesses is not completely understood, researchers have discovered that several ion channels and signalling pathways may have played a role in disease pathogenesis. Active substances from Astragalus sp. are being employed for nutrition, and their usefulness in the treatment of neurological illnesses is receiving more attention. Because their extracts and active components exert different pharmacological effects on a variety of ailments, they have a long history of usage as a cure for various diseases. This review summarizes the research work on Astragalus and their biologically active constituents as potential candidates for the protection against and treatment of neurodegenerative and neuropsychiatric disorders to show the potential efficacy of Astragalus sp. and its active ingredients in treating some neurological diseases. Simultaneously, the chemical structures of these active compounds, their sources, biological properties, and mechanisms are also listed. In ethnopharmacological applications, Astragalus membranaceus and spinosus have been studied as traditional medicines worldwide. The chemical constituents of Astragalus species mainly comprise terpenoids, flavonoids, and polysaccharides. The extracts and phytochemical compounds of Astragalus species exhibit various pharmacological activities, including antioxidant, anti-inflammatory, anticancer, antitumor, anticonvulsive, immunomodulatory, and other activities. Based on the current literature, we conclude that Astragalus is a promising dietary herb with multiple potential signal modulating applications that mainly include the modulation of neurotransmitters and receptors, anti-inflammatory activities, inhibition of amyloid aggregation, induction of myelin sheath repair and neurogenesis, as well as activation of the signalling pathways relevant to neurological diseases.


Asunto(s)
Planta del Astrágalo , Enfermedades del Sistema Nervioso , Fármacos Neuroprotectores , Saponinas , Antiinflamatorios , Planta del Astrágalo/química , Astragalus propinquus/química , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Saponinas/química
5.
Environ Sci Pollut Res Int ; 29(32): 48573-48587, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35194715

RESUMEN

Epilepsy is one of the most common serious brain disorders, affecting about 1% of the population all over the world. Ginkgo biloba extract (GbE) and L-carnitine (LC) reportedly possess the antioxidative activity and neuroprotective potential. In this report, we investigated the possible protective and therapeutic effects of GbE and LC against pentylenetetrazol (PTZ)-induced epileptic seizures in rat hippocampus and hypothalamus. Adult male albino rats were equally divided into eight groups: control, GbE (100 mg/kg), LC (300 mg/kg), PTZ (40 mg/kg), protective groups (GbE + PTZ and LC + PTZ), and therapeutic groups (PTZ + GbE and PTZ + LC). The oxidative stress, antioxidant, and neurochemical parameters, viz., malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), acetylcholine esterase (AchE), dopamine (DA), norepinephrine (NE), and serotonin (5-HT), in the hippocampal and hypothalamic regions have been evaluated. PTZ injection leads to an increase in the seizure score, the levels of MDA and NO, and to a decrease in the activity of GSH, SOD, CAT, and GPx. Besides, monoamine neurotransmitters, DA, NE, and 5-HT, were depleted in PTZ-kindled rats. Furthermore, PTZ administration caused a significant elevation in the activity of AchE. Hippocampal and hypothalamic sections from PTZ-treated animals were characterized by severe histopathological alterations and, intensely, increased the ezrin immunolabeled astrocytes. Pre- and post-treatment of PTZ rats with GbE and LC suppressed the kindling acquisition process and remarkably alleviated all the aforementioned PTZ-induced effects. GbE and LC have potent protective and therapeutic effects against PTZ-induced kindling seizures via the amelioration of oxidative/antioxidative imbalance, neuromodulatory, and antiepileptic actions.


Asunto(s)
Epilepsia , Pentilenotetrazol , Animales , Masculino , Antioxidantes/metabolismo , Carnitina/farmacología , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Epilepsia/patología , Ginkgo biloba , Glutatión Peroxidasa , Estrés Oxidativo , Pentilenotetrazol/uso terapéutico , Pentilenotetrazol/toxicidad , Extractos Vegetales/uso terapéutico , Serotonina/metabolismo , Superóxido Dismutasa/metabolismo , Ratas
6.
Curr Pharm Biotechnol ; 21(12): 1259-1268, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32196446

RESUMEN

BACKGROUND: Ginkgo biloba extract (GbE) is known to contain several bioactive compounds and exhibits free radical scavenging activity. Parkinson's Disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons and is associated with oxidative stress, neuroinflammation and apoptosis. OBJECTIVE: The current study aimed to investigate the neuroprotective effect of GbE in a rat model of PD induced by rotenone (ROT; a neurotoxin). METHODS: Twenty-four male albino rats were randomly divided into four groups of six rats each: normal control, GbE treated, toxin control (ROT treated) and GbE+ROT group. RESULTS: Oral administration of ROT (2.5 mg/kg b.w.) for 50 days caused an increased generation of lipid peroxidation products and significant depletion of reduced glutathione, total thiol content and activities of enzymatic antioxidants, i.e., superoxide dismutase and glutathione peroxidase in the brains of treated rats. Furthermore, ROT caused an elevation in acetylcholinesterase, interleukin-1ß, interleukin- 6 and tumor necrosis factor-α and a significant reduction in dopamine in the stratum and substantia nigra. Immunohistochemical results illustrated that ROT treatment reduced the expression of tyrosine hydroxylase (TH). GbE treatment (150 mg/kg b.w./day) significantly reduced the elevated oxidative stress markers and proinflammatory cytokines and restored the reduced antioxidant enzyme activities, DA level and TH expression. These results were confirmed by histological observations that clearly indicated a neuroprotective effect of GbE against ROT-induced PD. CONCLUSION: GbE mitigated ROT-induced PD via the inhibition of free-radical production, scavenging of ROS, and antioxidant enhancement.


Asunto(s)
Encéfalo/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Síndromes de Neurotoxicidad/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Administración Oral , Animales , Antioxidantes/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Citocinas/metabolismo , Suplementos Dietéticos , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Ginkgo biloba , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Fármacos Neuroprotectores/administración & dosificación , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Extractos Vegetales/administración & dosificación , Distribución Aleatoria , Ratas , Rotenona/toxicidad , Superóxido Dismutasa/metabolismo
7.
Environ Sci Pollut Res Int ; 25(20): 19510-19517, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29730760

RESUMEN

The present study aimed to investigate the protective effect of aqueous extracts of ginger (GE) and rosemary (RE), both individually and in combination, on carbon tetrachloride (CCl4)-induced liver injury in adult male rats. CCl4 induced significant increase in liver enzymes, bilirubin, triglycerides, and total cholesterol while total protein, albumin, and globulin were significantly decreased. Also, the activity of cytochrome P450 (CYP) and oxidative stress markers were found to be elevated with a concomitant decrease in the activity of antioxidant enzymes in hepatic tissue. Supplementation with extracts of ginger or rosemary effectively relieved most of the CCl4-induced alterations when administered singly. The joint therapy of the two extracts was more effective. The histological investigation strongly confirmed the highly protective effect of the two plant extracts in the hepatocytes. These findings suggest that rosemary and ginger extracts are effective in improving both the function and structure of the hepatocytes through their potent antioxidant effect and point out to the possibility of using a combination of both as an adjunct therapy in liver diseases.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Extractos Vegetales/uso terapéutico , Rosmarinus/química , Zingiber officinale/química , Animales , Antioxidantes/metabolismo , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Ratas
8.
Environ Sci Pollut Res Int ; 24(12): 11677-11682, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28324259

RESUMEN

Nigella sativa is a well-known dietary antioxidant and a valuable inhibitor of clastogenesis and carcinogenesis. The purpose of the present work was to investigate the effects of N. sativa seeds against chromosomal aberrations in primary spermatocytes and early embryonic lethality induced by CCl4 hepatotoxin in Swiss albino mice. One hundred male Swiss albino mice were randomly divided into five groups. Groups I, II, and III received only normal saline, olive oil, and aqueous suspension of N. sativa seeds (50 mg/kg b.w.), while groups IV and V were orally given CCl4 dissolved in olive oil at a dose level of 1.9 (» LD50) alone and with aqueous suspension of N. sativa seeds (50 mg/kg b.w.) alternately. Aqueous extract of N. sativa significantly reduced the elevated frequency of chromosomal aberrations induced by CCl4 in mouse primary spermatocytes. For the male-dominant lethal test, four males from each group (control and experimental) were used and each male was mated for 13 days to two untreated virgin females. On days 14-16 after breeding, all the females were evaluated for incidence of pregnancy, live implants, and fetal deaths. Treatment with 1/4 LD50 of CCl4 induced positive dominant lethal mutation, reflecting a high rate of deformations in male germ cells. Interestingly, no dominant lethal mutations were recorded in females mated to male mice treated with CCl4 plus N. sativa. Under the experimental conditions of this study, our results highlight the beneficial role of N. sativa against CCl4-induced mutagenicity.


Asunto(s)
Aberraciones Cromosómicas , Nigella sativa/química , Extractos Vegetales/farmacología , Semillas/química , Espermatocitos/efectos de los fármacos , Animales , Tetracloruro de Carbono , Femenino , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA