Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroimage ; 280: 120353, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37652114

RESUMEN

The simultaneous acquisition of electroencephalography and functional magnetic resonance imaging (EEG-fMRI) allows the complementary study of the brain's electrophysiology and hemodynamics with high temporal and spatial resolution. One application with great potential is neurofeedback training of targeted brain activity, based on the real-time analysis of the EEG and/or fMRI signals. This depends on the ability to reduce in real time the severe artifacts affecting the EEG signal acquired with fMRI, mainly the gradient and pulse artifacts. A few methods have been proposed for this purpose, but they are either slow, hardware-dependent, publicly unavailable, or proprietary software. Here, we present a fully open-source and publicly available tool for real-time EEG artifact reduction in simultaneous EEG-fMRI recordings that is fast and applicable to any hardware. Our tool is integrated in the Python toolbox NeuXus for real-time EEG processing and adapts to a real-time scenario well-established artifact average subtraction methods combined with a long short-term memory network for R peak detection. We benchmarked NeuXus on three different datasets, in terms of artifact power reduction and background signal preservation in resting state, alpha-band power reactivity to eyes closure, and event-related desynchronization during motor imagery. We showed that NeuXus performed at least as well as the only available real-time tool for conventional hardware setups (BrainVision's RecView) and a well-established offline tool (EEGLAB's FMRIB plugin). We also demonstrated NeuXus' real-time ability by reporting execution times under 250 ms. In conclusion, we present and validate the first fully open-source and hardware-independent solution for real-time artifact reduction in simultaneous EEG-fMRI studies.


Asunto(s)
Imagen por Resonancia Magnética , Neurorretroalimentación , Humanos , Artefactos , Electroencefalografía , Benchmarking
2.
Artículo en Inglés | MEDLINE | ID: mdl-34886301

RESUMEN

Neurofeedback training is a technique which has seen a widespread use in clinical applications, but has only given its first steps in the sport environment. Therefore, there is still little information about the effects that this technique might have on parameters, which are relevant for athletes' health and performance, such as heart rate variability, which has been linked to physiological recovery. In the sport domain, no studies have tried to understand the effects of neurofeedback training on heart rate variability, even though some studies have compared the effects of doing neurofeedback or heart rate biofeedback training on performance. The main goal of the present study was to understand if alpha-band neurofeedback training could lead to increases in heart rate variability. 30 male student-athletes, divided into two groups, (21.2 ± 2.62 year 2/week protocol and 22.6 ± 1.1 year 3/week protocol) participated in the study, of which three subjects were excluded. Both groups performed a pre-test, a trial session and 12 neurofeedback sessions, which consisted of 25 trials of 60 s of a neurofeedback task, with 5 s rest in-between trials. The total neurofeedback session time for each subject was 300 min in both groups. Throughout the experiment, electroencephalography and heart rate variability signals were recorded. Only the three sessions/week group revealed significant improvements in mean heart rate variability at the end of the 12 neurofeedback sessions (p = 0.05); however, significant interaction was not found when compared with both groups. It is possible to conclude that neurofeedback training of individual alpha band may induce changes in heart rate variability in physically active athletes.


Asunto(s)
Neurorretroalimentación , Deportes , Atletas , Electroencefalografía , Frecuencia Cardíaca , Humanos , Masculino
3.
Neural Plast ; 2021: 8881059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777137

RESUMEN

Neurofeedback training has shown benefits in clinical treatment and behavioral performance enhancement. Despite the wide range of applications, no consensus has been reached about the optimal training schedule. In this work, an EEG neurofeedback practical experiment was conducted aimed at investigating the effects of training intensity on the enhancement of the amplitude in the individual upper alpha band. We designed INTENSIVE and SPARSE training modalities, which differed regarding three essential aspects of training intensity: the number of sessions, the duration of a session, and the interval between sessions. Nine participants in the INTENSIVE group completed 4 sessions with 37.5 minutes each during consecutive days, while nine participants in the SPARSE group performed 6 sessions of 25 minutes spread over approximately 3 weeks. As a result, regarding the short-term effects, the upper alpha band amplitude change within sessions did not significantly differ between the two groups. Nonetheless, only the INTENSIVE group showed a significant increase in the upper alpha band amplitude. However, for the sustained effects across sessions, none of the groups showed significant changes in the upper alpha band amplitude across the whole course of training. The findings suggest that the progression within session is favored by the intensive design. Therefore, based on these findings, it is proposed that training intensity influences EEG self-regulation within sessions. Further investigations are needed to isolate different aspects of training intensity and effectively confirm if one modality globally outperforms the other.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Neurorretroalimentación/métodos , Neurorretroalimentación/fisiología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5960-5966, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31947205

RESUMEN

Electroencephalography (EEG) neurofeedback (NF) training has been shown to produce long-lasting effects on the improvement of cognitive function as well as the normalization of aberrant brain activity in disease. However, the impact of the sensory modality used as the NF reinforcement signal on training effectiveness has not been systematically investigated. In this work, an EEG-based NF-training system was developed targeting the individual upper-alpha (UA) band and using either a visual or an auditory reinforcement signal, so as to compare the effects of the two sensory modalities. Sixteen healthy volunteers were randomly assigned to the Visual or Auditory group, where a radius-varying sphere or a volume-varying sound, respectively, reflected the relative amplitude of UA measured at EEG electrode Cz. Each participant underwent a total of four NF sessions, of approximately 40 min each, on consecutive days. Both groups showed significant increases in UA at Cz within sessions, and also across sessions. Effects subsequent to NF training were also found beyond the target frequency UA and scalp location Cz, namely in the lower-alpha and theta bands and in posterior brain regions, respectively. Only small differences were found on the EEG between the Visual and Auditory groups, suggesting that auditory reinforcement signals may be as effective as the more commonly used visual signals. The use of auditory NF may potentiate training protocols conducted under mobile conditions, which are now possible due to the increasing availability of wireless EEG systems.


Asunto(s)
Estimulación Acústica , Electroencefalografía , Neurorretroalimentación , Estimulación Luminosa , Ritmo alfa , Encéfalo , Cognición , Femenino , Humanos , Masculino , Memoria a Corto Plazo , Distribución Aleatoria , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA